Metamath Proof Explorer


Theorem pcdiv

Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014)

Ref Expression
Assertion pcdiv PAA0BPpCntAB=PpCntAPpCntB

Proof

Step Hyp Ref Expression
1 simp1 PAA0BP
2 simp2l PAA0BA
3 simp3 PAA0BB
4 znq ABAB
5 2 3 4 syl2anc PAA0BAB
6 2 zcnd PAA0BA
7 3 nncnd PAA0BB
8 simp2r PAA0BA0
9 3 nnne0d PAA0BB0
10 6 7 8 9 divne0d PAA0BAB0
11 eqid supn0|Pnx<=supn0|Pnx<
12 eqid supn0|Pny<=supn0|Pny<
13 11 12 pcval PABAB0PpCntAB=ιz|xyAB=xyz=supn0|Pnx<supn0|Pny<
14 1 5 10 13 syl12anc PAA0BPpCntAB=ιz|xyAB=xyz=supn0|Pnx<supn0|Pny<
15 eqid supn0|PnA<=supn0|PnA<
16 15 pczpre PAA0PpCntA=supn0|PnA<
17 16 3adant3 PAA0BPpCntA=supn0|PnA<
18 nnz BB
19 nnne0 BB0
20 18 19 jca BBB0
21 eqid supn0|PnB<=supn0|PnB<
22 21 pczpre PBB0PpCntB=supn0|PnB<
23 20 22 sylan2 PBPpCntB=supn0|PnB<
24 23 3adant2 PAA0BPpCntB=supn0|PnB<
25 17 24 oveq12d PAA0BPpCntAPpCntB=supn0|PnA<supn0|PnB<
26 eqid AB=AB
27 25 26 jctil PAA0BAB=ABPpCntAPpCntB=supn0|PnA<supn0|PnB<
28 oveq1 x=Axy=Ay
29 28 eqeq2d x=AAB=xyAB=Ay
30 breq2 x=APnxPnA
31 30 rabbidv x=An0|Pnx=n0|PnA
32 31 supeq1d x=Asupn0|Pnx<=supn0|PnA<
33 32 oveq1d x=Asupn0|Pnx<supn0|Pny<=supn0|PnA<supn0|Pny<
34 33 eqeq2d x=APpCntAPpCntB=supn0|Pnx<supn0|Pny<PpCntAPpCntB=supn0|PnA<supn0|Pny<
35 29 34 anbi12d x=AAB=xyPpCntAPpCntB=supn0|Pnx<supn0|Pny<AB=AyPpCntAPpCntB=supn0|PnA<supn0|Pny<
36 oveq2 y=BAy=AB
37 36 eqeq2d y=BAB=AyAB=AB
38 breq2 y=BPnyPnB
39 38 rabbidv y=Bn0|Pny=n0|PnB
40 39 supeq1d y=Bsupn0|Pny<=supn0|PnB<
41 40 oveq2d y=Bsupn0|PnA<supn0|Pny<=supn0|PnA<supn0|PnB<
42 41 eqeq2d y=BPpCntAPpCntB=supn0|PnA<supn0|Pny<PpCntAPpCntB=supn0|PnA<supn0|PnB<
43 37 42 anbi12d y=BAB=AyPpCntAPpCntB=supn0|PnA<supn0|Pny<AB=ABPpCntAPpCntB=supn0|PnA<supn0|PnB<
44 35 43 rspc2ev ABAB=ABPpCntAPpCntB=supn0|PnA<supn0|PnB<xyAB=xyPpCntAPpCntB=supn0|Pnx<supn0|Pny<
45 2 3 27 44 syl3anc PAA0BxyAB=xyPpCntAPpCntB=supn0|Pnx<supn0|Pny<
46 ovex PpCntAPpCntBV
47 11 12 pceu PABAB0∃!zxyAB=xyz=supn0|Pnx<supn0|Pny<
48 1 5 10 47 syl12anc PAA0B∃!zxyAB=xyz=supn0|Pnx<supn0|Pny<
49 eqeq1 z=PpCntAPpCntBz=supn0|Pnx<supn0|Pny<PpCntAPpCntB=supn0|Pnx<supn0|Pny<
50 49 anbi2d z=PpCntAPpCntBAB=xyz=supn0|Pnx<supn0|Pny<AB=xyPpCntAPpCntB=supn0|Pnx<supn0|Pny<
51 50 2rexbidv z=PpCntAPpCntBxyAB=xyz=supn0|Pnx<supn0|Pny<xyAB=xyPpCntAPpCntB=supn0|Pnx<supn0|Pny<
52 51 iota2 PpCntAPpCntBV∃!zxyAB=xyz=supn0|Pnx<supn0|Pny<xyAB=xyPpCntAPpCntB=supn0|Pnx<supn0|Pny<ιz|xyAB=xyz=supn0|Pnx<supn0|Pny<=PpCntAPpCntB
53 46 48 52 sylancr PAA0BxyAB=xyPpCntAPpCntB=supn0|Pnx<supn0|Pny<ιz|xyAB=xyz=supn0|Pnx<supn0|Pny<=PpCntAPpCntB
54 45 53 mpbid PAA0Bιz|xyAB=xyz=supn0|Pnx<supn0|Pny<=PpCntAPpCntB
55 14 54 eqtrd PAA0BPpCntAB=PpCntAPpCntB