| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
simp2l |
|
| 3 |
|
simp3 |
|
| 4 |
|
znq |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
2
|
zcnd |
|
| 7 |
3
|
nncnd |
|
| 8 |
|
simp2r |
|
| 9 |
3
|
nnne0d |
|
| 10 |
6 7 8 9
|
divne0d |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
11 12
|
pcval |
|
| 14 |
1 5 10 13
|
syl12anc |
|
| 15 |
|
eqid |
|
| 16 |
15
|
pczpre |
|
| 17 |
16
|
3adant3 |
|
| 18 |
|
nnz |
|
| 19 |
|
nnne0 |
|
| 20 |
18 19
|
jca |
|
| 21 |
|
eqid |
|
| 22 |
21
|
pczpre |
|
| 23 |
20 22
|
sylan2 |
|
| 24 |
23
|
3adant2 |
|
| 25 |
17 24
|
oveq12d |
|
| 26 |
|
eqid |
|
| 27 |
25 26
|
jctil |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
|
breq2 |
|
| 31 |
30
|
rabbidv |
|
| 32 |
31
|
supeq1d |
|
| 33 |
32
|
oveq1d |
|
| 34 |
33
|
eqeq2d |
|
| 35 |
29 34
|
anbi12d |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
|
breq2 |
|
| 39 |
38
|
rabbidv |
|
| 40 |
39
|
supeq1d |
|
| 41 |
40
|
oveq2d |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
37 42
|
anbi12d |
|
| 44 |
35 43
|
rspc2ev |
|
| 45 |
2 3 27 44
|
syl3anc |
|
| 46 |
|
ovex |
|
| 47 |
11 12
|
pceu |
|
| 48 |
1 5 10 47
|
syl12anc |
|
| 49 |
|
eqeq1 |
|
| 50 |
49
|
anbi2d |
|
| 51 |
50
|
2rexbidv |
|
| 52 |
51
|
iota2 |
|
| 53 |
46 48 52
|
sylancr |
|
| 54 |
45 53
|
mpbid |
|
| 55 |
14 54
|
eqtrd |
|