Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pcdiv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | simp2l | |
|
3 | simp3 | |
|
4 | znq | |
|
5 | 2 3 4 | syl2anc | |
6 | 2 | zcnd | |
7 | 3 | nncnd | |
8 | simp2r | |
|
9 | 3 | nnne0d | |
10 | 6 7 8 9 | divne0d | |
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 | pcval | |
14 | 1 5 10 13 | syl12anc | |
15 | eqid | |
|
16 | 15 | pczpre | |
17 | 16 | 3adant3 | |
18 | nnz | |
|
19 | nnne0 | |
|
20 | 18 19 | jca | |
21 | eqid | |
|
22 | 21 | pczpre | |
23 | 20 22 | sylan2 | |
24 | 23 | 3adant2 | |
25 | 17 24 | oveq12d | |
26 | eqid | |
|
27 | 25 26 | jctil | |
28 | oveq1 | |
|
29 | 28 | eqeq2d | |
30 | breq2 | |
|
31 | 30 | rabbidv | |
32 | 31 | supeq1d | |
33 | 32 | oveq1d | |
34 | 33 | eqeq2d | |
35 | 29 34 | anbi12d | |
36 | oveq2 | |
|
37 | 36 | eqeq2d | |
38 | breq2 | |
|
39 | 38 | rabbidv | |
40 | 39 | supeq1d | |
41 | 40 | oveq2d | |
42 | 41 | eqeq2d | |
43 | 37 42 | anbi12d | |
44 | 35 43 | rspc2ev | |
45 | 2 3 27 44 | syl3anc | |
46 | ovex | |
|
47 | 11 12 | pceu | |
48 | 1 5 10 47 | syl12anc | |
49 | eqeq1 | |
|
50 | 49 | anbi2d | |
51 | 50 | 2rexbidv | |
52 | 51 | iota2 | |
53 | 46 48 52 | sylancr | |
54 | 45 53 | mpbid | |
55 | 14 54 | eqtrd | |