Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pcexp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | oveq2d | |
3 | oveq1 | |
|
4 | 2 3 | eqeq12d | |
5 | oveq2 | |
|
6 | 5 | oveq2d | |
7 | oveq1 | |
|
8 | 6 7 | eqeq12d | |
9 | oveq2 | |
|
10 | 9 | oveq2d | |
11 | oveq1 | |
|
12 | 10 11 | eqeq12d | |
13 | oveq2 | |
|
14 | 13 | oveq2d | |
15 | oveq1 | |
|
16 | 14 15 | eqeq12d | |
17 | oveq2 | |
|
18 | 17 | oveq2d | |
19 | oveq1 | |
|
20 | 18 19 | eqeq12d | |
21 | pc1 | |
|
22 | 21 | adantr | |
23 | qcn | |
|
24 | 23 | ad2antrl | |
25 | 24 | exp0d | |
26 | 25 | oveq2d | |
27 | pcqcl | |
|
28 | 27 | zcnd | |
29 | 28 | mul02d | |
30 | 22 26 29 | 3eqtr4d | |
31 | oveq1 | |
|
32 | expp1 | |
|
33 | 24 32 | sylan | |
34 | 33 | oveq2d | |
35 | simpll | |
|
36 | simplrl | |
|
37 | simplrr | |
|
38 | nn0z | |
|
39 | 38 | adantl | |
40 | qexpclz | |
|
41 | 36 37 39 40 | syl3anc | |
42 | 24 | adantr | |
43 | 42 37 39 | expne0d | |
44 | pcqmul | |
|
45 | 35 41 43 36 37 44 | syl122anc | |
46 | 34 45 | eqtrd | |
47 | nn0cn | |
|
48 | 47 | adantl | |
49 | 28 | adantr | |
50 | 48 49 | adddirp1d | |
51 | 46 50 | eqeq12d | |
52 | 31 51 | imbitrrid | |
53 | 52 | ex | |
54 | negeq | |
|
55 | nnnn0 | |
|
56 | expneg | |
|
57 | 24 55 56 | syl2an | |
58 | 57 | oveq2d | |
59 | simpll | |
|
60 | 55 41 | sylan2 | |
61 | 55 43 | sylan2 | |
62 | pcrec | |
|
63 | 59 60 61 62 | syl12anc | |
64 | 58 63 | eqtrd | |
65 | nncn | |
|
66 | mulneg1 | |
|
67 | 65 28 66 | syl2anr | |
68 | 64 67 | eqeq12d | |
69 | 54 68 | imbitrrid | |
70 | 69 | ex | |
71 | 4 8 12 16 20 30 53 70 | zindd | |
72 | 71 | 3impia | |