Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pcmpt.1 | |
|
pcmpt.2 | |
||
pcmpt.3 | |
||
pcmpt.4 | |
||
pcmpt.5 | |
||
pcmpt2.6 | |
||
Assertion | pcmpt2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmpt.1 | |
|
2 | pcmpt.2 | |
|
3 | pcmpt.3 | |
|
4 | pcmpt.4 | |
|
5 | pcmpt.5 | |
|
6 | pcmpt2.6 | |
|
7 | 1 2 | pcmptcl | |
8 | 7 | simprd | |
9 | eluznn | |
|
10 | 3 6 9 | syl2anc | |
11 | 8 10 | ffvelcdmd | |
12 | 11 | nnzd | |
13 | 11 | nnne0d | |
14 | 8 3 | ffvelcdmd | |
15 | pcdiv | |
|
16 | 4 12 13 14 15 | syl121anc | |
17 | 1 2 10 4 5 | pcmpt | |
18 | 1 2 3 4 5 | pcmpt | |
19 | 17 18 | oveq12d | |
20 | 5 | eleq1d | |
21 | 20 2 4 | rspcdva | |
22 | 21 | nn0cnd | |
23 | 22 | subidd | |
24 | 23 | adantr | |
25 | prmnn | |
|
26 | 4 25 | syl | |
27 | 26 | nnred | |
28 | 27 | adantr | |
29 | 3 | nnred | |
30 | 29 | adantr | |
31 | 10 | nnred | |
32 | 31 | adantr | |
33 | simpr | |
|
34 | eluzle | |
|
35 | 6 34 | syl | |
36 | 35 | adantr | |
37 | 28 30 32 33 36 | letrd | |
38 | 37 | iftrued | |
39 | iftrue | |
|
40 | 39 | adantl | |
41 | 38 40 | oveq12d | |
42 | simpr | |
|
43 | 42 33 | nsyl3 | |
44 | 43 | iffalsed | |
45 | 24 41 44 | 3eqtr4d | |
46 | iffalse | |
|
47 | 46 | oveq2d | |
48 | 0cn | |
|
49 | ifcl | |
|
50 | 22 48 49 | sylancl | |
51 | 50 | subid1d | |
52 | 47 51 | sylan9eqr | |
53 | simpr | |
|
54 | 53 | biantrud | |
55 | 54 | ifbid | |
56 | 52 55 | eqtrd | |
57 | 45 56 | pm2.61dan | |
58 | 16 19 57 | 3eqtrd | |