Metamath Proof Explorer


Theorem pcoval2

Description: Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010) (Proof shortened by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses pcoval.2 φ F II Cn J
pcoval.3 φ G II Cn J
pcoval2.4 φ F 1 = G 0
Assertion pcoval2 φ X 1 2 1 F * 𝑝 J G X = G 2 X 1

Proof

Step Hyp Ref Expression
1 pcoval.2 φ F II Cn J
2 pcoval.3 φ G II Cn J
3 pcoval2.4 φ F 1 = G 0
4 0re 0
5 1re 1
6 halfge0 0 1 2
7 1le1 1 1
8 iccss 0 1 0 1 2 1 1 1 2 1 0 1
9 4 5 6 7 8 mp4an 1 2 1 0 1
10 9 sseli X 1 2 1 X 0 1
11 1 2 pcovalg φ X 0 1 F * 𝑝 J G X = if X 1 2 F 2 X G 2 X 1
12 10 11 sylan2 φ X 1 2 1 F * 𝑝 J G X = if X 1 2 F 2 X G 2 X 1
13 3 adantr φ X 1 2 1 X 1 2 F 1 = G 0
14 simprr φ X 1 2 1 X 1 2 X 1 2
15 halfre 1 2
16 15 5 elicc2i X 1 2 1 X 1 2 X X 1
17 16 simp2bi X 1 2 1 1 2 X
18 17 ad2antrl φ X 1 2 1 X 1 2 1 2 X
19 16 simp1bi X 1 2 1 X
20 19 ad2antrl φ X 1 2 1 X 1 2 X
21 letri3 X 1 2 X = 1 2 X 1 2 1 2 X
22 20 15 21 sylancl φ X 1 2 1 X 1 2 X = 1 2 X 1 2 1 2 X
23 14 18 22 mpbir2and φ X 1 2 1 X 1 2 X = 1 2
24 23 oveq2d φ X 1 2 1 X 1 2 2 X = 2 1 2
25 2cn 2
26 2ne0 2 0
27 25 26 recidi 2 1 2 = 1
28 24 27 syl6eq φ X 1 2 1 X 1 2 2 X = 1
29 28 fveq2d φ X 1 2 1 X 1 2 F 2 X = F 1
30 28 oveq1d φ X 1 2 1 X 1 2 2 X 1 = 1 1
31 1m1e0 1 1 = 0
32 30 31 syl6eq φ X 1 2 1 X 1 2 2 X 1 = 0
33 32 fveq2d φ X 1 2 1 X 1 2 G 2 X 1 = G 0
34 13 29 33 3eqtr4d φ X 1 2 1 X 1 2 F 2 X = G 2 X 1
35 34 ifeq1d φ X 1 2 1 X 1 2 if X 1 2 F 2 X G 2 X 1 = if X 1 2 G 2 X 1 G 2 X 1
36 ifid if X 1 2 G 2 X 1 G 2 X 1 = G 2 X 1
37 35 36 syl6eq φ X 1 2 1 X 1 2 if X 1 2 F 2 X G 2 X 1 = G 2 X 1
38 37 expr φ X 1 2 1 X 1 2 if X 1 2 F 2 X G 2 X 1 = G 2 X 1
39 iffalse ¬ X 1 2 if X 1 2 F 2 X G 2 X 1 = G 2 X 1
40 38 39 pm2.61d1 φ X 1 2 1 if X 1 2 F 2 X G 2 X 1 = G 2 X 1
41 12 40 eqtrd φ X 1 2 1 F * 𝑝 J G X = G 2 X 1