Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005) (Revised by Mario Carneiro, 3-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | peano5uzi.1 | |
|
Assertion | peano5uzi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano5uzi.1 | |
|
2 | breq2 | |
|
3 | 2 | elrab | |
4 | zcn | |
|
5 | 4 | ad2antrl | |
6 | zcn | |
|
7 | 1 6 | ax-mp | |
8 | ax-1cn | |
|
9 | 7 8 | subcli | |
10 | npcan | |
|
11 | 5 9 10 | sylancl | |
12 | subsub | |
|
13 | 7 8 12 | mp3an23 | |
14 | 5 13 | syl | |
15 | znn0sub | |
|
16 | 1 15 | mpan | |
17 | 16 | biimpa | |
18 | 17 | adantl | |
19 | nn0p1nn | |
|
20 | 18 19 | syl | |
21 | 14 20 | eqeltrd | |
22 | simpl | |
|
23 | oveq1 | |
|
24 | 23 | eleq1d | |
25 | 24 | imbi2d | |
26 | oveq1 | |
|
27 | 26 | eleq1d | |
28 | 27 | imbi2d | |
29 | oveq1 | |
|
30 | 29 | eleq1d | |
31 | 30 | imbi2d | |
32 | oveq1 | |
|
33 | 32 | eleq1d | |
34 | 33 | imbi2d | |
35 | 8 7 | pncan3i | |
36 | simpl | |
|
37 | 35 36 | eqeltrid | |
38 | oveq1 | |
|
39 | 38 | eleq1d | |
40 | 39 | rspccv | |
41 | 40 | ad2antll | |
42 | nncn | |
|
43 | 42 | adantr | |
44 | add32 | |
|
45 | 9 8 44 | mp3an23 | |
46 | 43 45 | syl | |
47 | 46 | eleq1d | |
48 | 41 47 | sylibd | |
49 | 48 | ex | |
50 | 49 | a2d | |
51 | 25 28 31 34 37 50 | nnind | |
52 | 21 22 51 | sylc | |
53 | 11 52 | eqeltrrd | |
54 | 53 | ex | |
55 | 3 54 | biimtrid | |
56 | 55 | ssrdv | |