Metamath Proof Explorer


Theorem pellfundre

Description: The fundamental solution of a Pell equation exists as a real number. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pellfundre DPellFundD

Proof

Step Hyp Ref Expression
1 pellfundval DPellFundD=supaPell14QRD|1<a<
2 ssrab2 aPell14QRD|1<aPell14QRD
3 pell14qrre DaPell14QRDa
4 3 ex DaPell14QRDa
5 4 ssrdv DPell14QRD
6 2 5 sstrid DaPell14QRD|1<a
7 pell1qrss14 DPell1QRDPell14QRD
8 pellqrex DaPell1QRD1<a
9 ssrexv Pell1QRDPell14QRDaPell1QRD1<aaPell14QRD1<a
10 7 8 9 sylc DaPell14QRD1<a
11 rabn0 aPell14QRD|1<aaPell14QRD1<a
12 10 11 sylibr DaPell14QRD|1<a
13 1re 1
14 breq2 a=c1<a1<c
15 14 elrab caPell14QRD|1<acPell14QRD1<c
16 pell14qrre DcPell14QRDc
17 ltle 1c1<c1c
18 13 16 17 sylancr DcPell14QRD1<c1c
19 18 expimpd DcPell14QRD1<c1c
20 15 19 biimtrid DcaPell14QRD|1<a1c
21 20 ralrimiv DcaPell14QRD|1<a1c
22 breq1 b=1bc1c
23 22 ralbidv b=1caPell14QRD|1<abccaPell14QRD|1<a1c
24 23 rspcev 1caPell14QRD|1<a1cbcaPell14QRD|1<abc
25 13 21 24 sylancr DbcaPell14QRD|1<abc
26 infrecl aPell14QRD|1<aaPell14QRD|1<abcaPell14QRD|1<abcsupaPell14QRD|1<a<
27 6 12 25 26 syl3anc DsupaPell14QRD|1<a<
28 1 27 eqeltrd DPellFundD