Metamath Proof Explorer


Theorem permac8prim

Description: The Axiom of Choice ac8prim holds in permutation models. Part of Exercise II.9.3 of Kunen2 p. 149. Note that ax-ac requires Regularity for its derivation from the usual Axiom of Choice and does not necessarily hold in permutation models. (Contributed by Eric Schmidt, 16-Nov-2025)

Ref Expression
Hypotheses permmodel.1 F : V 1-1 onto V
permmodel.2 R = F -1 E
Assertion permac8prim z z R x w w R z z w z R x w R x ¬ z = w y y R z ¬ y R w y z z R x w v v R z v R y v = w

Proof

Step Hyp Ref Expression
1 permmodel.1 F : V 1-1 onto V
2 permmodel.2 R = F -1 E
3 df-ral z F x F z z z F x F z
4 f1ofn F : V 1-1 onto V F Fn V
5 1 4 ax-mp F Fn V
6 ssv F x V
7 neeq1 t = F z t F z
8 7 ralima F Fn V F x V t F F x t z F x F z
9 5 6 8 mp2an t F F x t z F x F z
10 vex z V
11 vex x V
12 1 2 10 11 brpermmodel z R x z F x
13 vex w V
14 1 2 13 10 brpermmodel w R z w F z
15 14 exbii w w R z w w F z
16 n0 F z w w F z
17 15 16 bitr4i w w R z F z
18 12 17 imbi12i z R x w w R z z F x F z
19 18 albii z z R x w w R z z z F x F z
20 3 9 19 3bitr4i t F F x t z z R x w w R z
21 neeq2 q = F w t q t F w
22 ineq2 q = F w t q = t F w
23 22 eqeq1d q = F w t q = t F w =
24 21 23 imbi12d q = F w t q t q = t F w t F w =
25 24 ralima F Fn V F x V q F F x t q t q = w F x t F w t F w =
26 5 6 25 mp2an q F F x t q t q = w F x t F w t F w =
27 26 ralbii t F F x q F F x t q t q = t F F x w F x t F w t F w =
28 neeq1 t = F z t F w F z F w
29 ineq1 t = F z t F w = F z F w
30 29 eqeq1d t = F z t F w = F z F w =
31 28 30 imbi12d t = F z t F w t F w = F z F w F z F w =
32 31 ralbidv t = F z w F x t F w t F w = w F x F z F w F z F w =
33 32 ralima F Fn V F x V t F F x w F x t F w t F w = z F x w F x F z F w F z F w =
34 5 6 33 mp2an t F F x w F x t F w t F w = z F x w F x F z F w F z F w =
35 r2al z F x w F x F z F w F z F w = z w z F x w F x F z F w F z F w =
36 27 34 35 3bitri t F F x q F F x t q t q = z w z F x w F x F z F w F z F w =
37 1 2 13 11 brpermmodel w R x w F x
38 12 37 anbi12i z R x w R x z F x w F x
39 df-ne F z F w ¬ F z = F w
40 f1of1 F : V 1-1 onto V F : V 1-1 V
41 1 40 ax-mp F : V 1-1 V
42 f1fveq F : V 1-1 V z V w V F z = F w z = w
43 41 42 mpan z V w V F z = F w z = w
44 43 el2v F z = F w z = w
45 44 notbii ¬ F z = F w ¬ z = w
46 39 45 bitr2i ¬ z = w F z F w
47 vex y V
48 1 2 47 10 brpermmodel y R z y F z
49 1 2 47 13 brpermmodel y R w y F w
50 49 notbii ¬ y R w ¬ y F w
51 48 50 imbi12i y R z ¬ y R w y F z ¬ y F w
52 51 albii y y R z ¬ y R w y y F z ¬ y F w
53 disj1 F z F w = y y F z ¬ y F w
54 52 53 bitr4i y y R z ¬ y R w F z F w =
55 46 54 imbi12i ¬ z = w y y R z ¬ y R w F z F w F z F w =
56 38 55 imbi12i z R x w R x ¬ z = w y y R z ¬ y R w z F x w F x F z F w F z F w =
57 56 2albii z w z R x w R x ¬ z = w y y R z ¬ y R w z w z F x w F x F z F w F z F w =
58 36 57 bitr4i t F F x q F F x t q t q = z w z R x w R x ¬ z = w y y R z ¬ y R w
59 f1ofun F : V 1-1 onto V Fun F
60 fvex F x V
61 60 funimaex Fun F F F x V
62 1 59 61 mp2b F F x V
63 raleq r = F F x t r t t F F x t
64 raleq r = F F x q r t q t q = q F F x t q t q =
65 64 raleqbi1dv r = F F x t r q r t q t q = t F F x q F F x t q t q =
66 63 65 anbi12d r = F F x t r t t r q r t q t q = t F F x t t F F x q F F x t q t q =
67 raleq r = F F x t r ∃! v v t s t F F x ∃! v v t s
68 67 exbidv r = F F x s t r ∃! v v t s s t F F x ∃! v v t s
69 66 68 imbi12d r = F F x t r t t r q r t q t q = s t r ∃! v v t s t F F x t t F F x q F F x t q t q = s t F F x ∃! v v t s
70 ac8 t r t t r q r t q t q = s t r ∃! v v t s
71 62 69 70 vtocl t F F x t t F F x q F F x t q t q = s t F F x ∃! v v t s
72 20 58 71 syl2anbr z z R x w w R z z w z R x w R x ¬ z = w y y R z ¬ y R w s t F F x ∃! v v t s
73 ineq1 t = F z t s = F z s
74 73 eleq2d t = F z v t s v F z s
75 74 eubidv t = F z ∃! v v t s ∃! v v F z s
76 75 ralima F Fn V F x V t F F x ∃! v v t s z F x ∃! v v F z s
77 5 6 76 mp2an t F F x ∃! v v t s z F x ∃! v v F z s
78 df-ral z F x ∃! v v F z s z z F x ∃! v v F z s
79 77 78 bitri t F F x ∃! v v t s z z F x ∃! v v F z s
80 fvex F -1 s V
81 12 a1i y = F -1 s z R x z F x
82 vex v V
83 1 2 82 10 brpermmodel v R z v F z
84 83 a1i y = F -1 s v R z v F z
85 breq2 y = F -1 s v R y v R F -1 s
86 vex s V
87 1 2 82 86 brpermmodelcnv v R F -1 s v s
88 85 87 bitrdi y = F -1 s v R y v s
89 84 88 anbi12d y = F -1 s v R z v R y v F z v s
90 89 bibi1d y = F -1 s v R z v R y v = w v F z v s v = w
91 90 albidv y = F -1 s v v R z v R y v = w v v F z v s v = w
92 91 exbidv y = F -1 s w v v R z v R y v = w w v v F z v s v = w
93 elin v F z s v F z v s
94 93 eubii ∃! v v F z s ∃! v v F z v s
95 eu6 ∃! v v F z v s w v v F z v s v = w
96 94 95 bitri ∃! v v F z s w v v F z v s v = w
97 92 96 bitr4di y = F -1 s w v v R z v R y v = w ∃! v v F z s
98 81 97 imbi12d y = F -1 s z R x w v v R z v R y v = w z F x ∃! v v F z s
99 98 albidv y = F -1 s z z R x w v v R z v R y v = w z z F x ∃! v v F z s
100 80 99 spcev z z F x ∃! v v F z s y z z R x w v v R z v R y v = w
101 79 100 sylbi t F F x ∃! v v t s y z z R x w v v R z v R y v = w
102 101 exlimiv s t F F x ∃! v v t s y z z R x w v v R z v R y v = w
103 72 102 syl z z R x w w R z z w z R x w R x ¬ z = w y y R z ¬ y R w y z z R x w v v R z v R y v = w