Metamath Proof Explorer


Theorem pmeasadd

Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypotheses caraext.1 φP:R0+∞
caraext.2 φP=0
caraext.3 φxωxRDisjyxyPx=*yxPy
pmeassubadd.q Q=s𝒫𝒫O|sxsysxysxys
pmeassubadd.1 φRQ
pmeassubadd.2 φAω
pmeassubadd.3 φkABR
pmeasadd.4 φDisjkAB
Assertion pmeasadd φPkAB=*kAPB

Proof

Step Hyp Ref Expression
1 caraext.1 φP:R0+∞
2 caraext.2 φP=0
3 caraext.3 φxωxRDisjyxyPx=*yxPy
4 pmeassubadd.q Q=s𝒫𝒫O|sxsysxysxys
5 pmeassubadd.1 φRQ
6 pmeassubadd.2 φAω
7 pmeassubadd.3 φkABR
8 pmeasadd.4 φDisjkAB
9 7 ralrimiva φkABR
10 dfiun3g kABRkAB=rankAB
11 9 10 syl φkAB=rankAB
12 11 fveq2d φPkAB=PrankAB
13 mptct AωkABω
14 rnct kABωrankABω
15 6 13 14 3syl φrankABω
16 eqid kAB=kAB
17 16 rnmptss kABRrankABR
18 9 17 syl φrankABR
19 disjrnmpt DisjkABDisjyrankABy
20 8 19 syl φDisjyrankABy
21 15 18 20 3jca φrankABωrankABRDisjyrankABy
22 21 ancli φφrankABωrankABRDisjyrankABy
23 ctex AωAV
24 mptexg AVkABV
25 6 23 24 3syl φkABV
26 rnexg kABVrankABV
27 breq1 x=rankABxωrankABω
28 sseq1 x=rankABxRrankABR
29 disjeq1 x=rankABDisjyxyDisjyrankABy
30 27 28 29 3anbi123d x=rankABxωxRDisjyxyrankABωrankABRDisjyrankABy
31 30 anbi2d x=rankABφxωxRDisjyxyφrankABωrankABRDisjyrankABy
32 unieq x=rankABx=rankAB
33 32 fveq2d x=rankABPx=PrankAB
34 esumeq1 x=rankAB*yxPy=*yrankABPy
35 33 34 eqeq12d x=rankABPx=*yxPyPrankAB=*yrankABPy
36 31 35 imbi12d x=rankABφxωxRDisjyxyPx=*yxPyφrankABωrankABRDisjyrankAByPrankAB=*yrankABPy
37 36 3 vtoclg rankABVφrankABωrankABRDisjyrankAByPrankAB=*yrankABPy
38 25 26 37 3syl φφrankABωrankABRDisjyrankAByPrankAB=*yrankABPy
39 22 38 mpd φPrankAB=*yrankABPy
40 fveq2 y=BPy=PB
41 6 23 syl φAV
42 1 adantr φkAP:R0+∞
43 42 7 ffvelcdmd φkAPB0+∞
44 fveq2 B=PB=P
45 44 adantl φkAB=PB=P
46 2 ad2antrr φkAB=P=0
47 45 46 eqtrd φkAB=PB=0
48 40 41 43 7 47 8 esumrnmpt2 φ*yrankABPy=*kAPB
49 12 39 48 3eqtrd φPkAB=*kAPB