Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caraext.1 | |
|
caraext.2 | |
||
caraext.3 | |
||
pmeassubadd.q | |
||
pmeassubadd.1 | |
||
pmeassubadd.2 | |
||
pmeassubadd.3 | |
||
pmeasadd.4 | |
||
Assertion | pmeasadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caraext.1 | |
|
2 | caraext.2 | |
|
3 | caraext.3 | |
|
4 | pmeassubadd.q | |
|
5 | pmeassubadd.1 | |
|
6 | pmeassubadd.2 | |
|
7 | pmeassubadd.3 | |
|
8 | pmeasadd.4 | |
|
9 | 7 | ralrimiva | |
10 | dfiun3g | |
|
11 | 9 10 | syl | |
12 | 11 | fveq2d | |
13 | mptct | |
|
14 | rnct | |
|
15 | 6 13 14 | 3syl | |
16 | eqid | |
|
17 | 16 | rnmptss | |
18 | 9 17 | syl | |
19 | disjrnmpt | |
|
20 | 8 19 | syl | |
21 | 15 18 20 | 3jca | |
22 | 21 | ancli | |
23 | ctex | |
|
24 | mptexg | |
|
25 | 6 23 24 | 3syl | |
26 | rnexg | |
|
27 | breq1 | |
|
28 | sseq1 | |
|
29 | disjeq1 | |
|
30 | 27 28 29 | 3anbi123d | |
31 | 30 | anbi2d | |
32 | unieq | |
|
33 | 32 | fveq2d | |
34 | esumeq1 | |
|
35 | 33 34 | eqeq12d | |
36 | 31 35 | imbi12d | |
37 | 36 3 | vtoclg | |
38 | 25 26 37 | 3syl | |
39 | 22 38 | mpd | |
40 | fveq2 | |
|
41 | 6 23 | syl | |
42 | 1 | adantr | |
43 | 42 7 | ffvelcdmd | |
44 | fveq2 | |
|
45 | 44 | adantl | |
46 | 2 | ad2antrr | |
47 | 45 46 | eqtrd | |
48 | 40 41 43 7 47 8 | esumrnmpt2 | |
49 | 12 39 48 | 3eqtrd | |