Description: Lemma for pmod1i . (Contributed by NM, 9-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmodlem.l | |
|
pmodlem.j | |
||
pmodlem.a | |
||
pmodlem.s | |
||
pmodlem.p | |
||
Assertion | pmodlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmodlem.l | |
|
2 | pmodlem.j | |
|
3 | pmodlem.a | |
|
4 | pmodlem.s | |
|
5 | pmodlem.p | |
|
6 | simpr | |
|
7 | 6 | oveq1d | |
8 | simpl1 | |
|
9 | simpl22 | |
|
10 | 3 5 | padd02 | |
11 | 8 9 10 | syl2anc | |
12 | 7 11 | eqtrd | |
13 | 12 | ineq1d | |
14 | ssinss1 | |
|
15 | 9 14 | syl | |
16 | simpl21 | |
|
17 | 3 5 | sspadd2 | |
18 | 8 15 16 17 | syl3anc | |
19 | 13 18 | eqsstrd | |
20 | oveq2 | |
|
21 | simp1 | |
|
22 | simp21 | |
|
23 | 3 5 | padd01 | |
24 | 21 22 23 | syl2anc | |
25 | 20 24 | sylan9eqr | |
26 | 25 | ineq1d | |
27 | inss1 | |
|
28 | simpl1 | |
|
29 | simpl21 | |
|
30 | simpl22 | |
|
31 | 30 14 | syl | |
32 | 3 5 | sspadd1 | |
33 | 28 29 31 32 | syl3anc | |
34 | 27 33 | sstrid | |
35 | 26 34 | eqsstrd | |
36 | elin | |
|
37 | simpl1 | |
|
38 | 37 | hllatd | |
39 | simpl21 | |
|
40 | simpl22 | |
|
41 | simprl | |
|
42 | 1 2 3 5 | elpaddn0 | |
43 | 38 39 40 41 42 | syl31anc | |
44 | simpl1 | |
|
45 | simpl21 | |
|
46 | simpl22 | |
|
47 | simpl23 | |
|
48 | simpl3 | |
|
49 | simpr1 | |
|
50 | simpr2l | |
|
51 | simpr2r | |
|
52 | simpr3 | |
|
53 | 1 2 3 4 5 | pmodlem1 | |
54 | 44 45 46 47 48 49 50 51 52 53 | syl333anc | |
55 | 54 | 3exp2 | |
56 | 55 | imp | |
57 | 56 | rexlimdvv | |
58 | 57 | adantld | |
59 | 58 | adantrl | |
60 | 43 59 | sylbid | |
61 | 60 | exp32 | |
62 | 61 | com34 | |
63 | 62 | imp4b | |
64 | 36 63 | biimtrid | |
65 | 64 | ssrdv | |
66 | 19 35 65 | pm2.61da2ne | |