| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmodlem.l |  | 
						
							| 2 |  | pmodlem.j |  | 
						
							| 3 |  | pmodlem.a |  | 
						
							| 4 |  | pmodlem.s |  | 
						
							| 5 |  | pmodlem.p |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 | 6 | oveq1d |  | 
						
							| 8 |  | simpl1 |  | 
						
							| 9 |  | simpl22 |  | 
						
							| 10 | 3 5 | padd02 |  | 
						
							| 11 | 8 9 10 | syl2anc |  | 
						
							| 12 | 7 11 | eqtrd |  | 
						
							| 13 | 12 | ineq1d |  | 
						
							| 14 |  | ssinss1 |  | 
						
							| 15 | 9 14 | syl |  | 
						
							| 16 |  | simpl21 |  | 
						
							| 17 | 3 5 | sspadd2 |  | 
						
							| 18 | 8 15 16 17 | syl3anc |  | 
						
							| 19 | 13 18 | eqsstrd |  | 
						
							| 20 |  | oveq2 |  | 
						
							| 21 |  | simp1 |  | 
						
							| 22 |  | simp21 |  | 
						
							| 23 | 3 5 | padd01 |  | 
						
							| 24 | 21 22 23 | syl2anc |  | 
						
							| 25 | 20 24 | sylan9eqr |  | 
						
							| 26 | 25 | ineq1d |  | 
						
							| 27 |  | inss1 |  | 
						
							| 28 |  | simpl1 |  | 
						
							| 29 |  | simpl21 |  | 
						
							| 30 |  | simpl22 |  | 
						
							| 31 | 30 14 | syl |  | 
						
							| 32 | 3 5 | sspadd1 |  | 
						
							| 33 | 28 29 31 32 | syl3anc |  | 
						
							| 34 | 27 33 | sstrid |  | 
						
							| 35 | 26 34 | eqsstrd |  | 
						
							| 36 |  | elin |  | 
						
							| 37 |  | simpl1 |  | 
						
							| 38 | 37 | hllatd |  | 
						
							| 39 |  | simpl21 |  | 
						
							| 40 |  | simpl22 |  | 
						
							| 41 |  | simprl |  | 
						
							| 42 | 1 2 3 5 | elpaddn0 |  | 
						
							| 43 | 38 39 40 41 42 | syl31anc |  | 
						
							| 44 |  | simpl1 |  | 
						
							| 45 |  | simpl21 |  | 
						
							| 46 |  | simpl22 |  | 
						
							| 47 |  | simpl23 |  | 
						
							| 48 |  | simpl3 |  | 
						
							| 49 |  | simpr1 |  | 
						
							| 50 |  | simpr2l |  | 
						
							| 51 |  | simpr2r |  | 
						
							| 52 |  | simpr3 |  | 
						
							| 53 | 1 2 3 4 5 | pmodlem1 |  | 
						
							| 54 | 44 45 46 47 48 49 50 51 52 53 | syl333anc |  | 
						
							| 55 | 54 | 3exp2 |  | 
						
							| 56 | 55 | imp |  | 
						
							| 57 | 56 | rexlimdvv |  | 
						
							| 58 | 57 | adantld |  | 
						
							| 59 | 58 | adantrl |  | 
						
							| 60 | 43 59 | sylbid |  | 
						
							| 61 | 60 | exp32 |  | 
						
							| 62 | 61 | com34 |  | 
						
							| 63 | 62 | imp4b |  | 
						
							| 64 | 36 63 | biimtrid |  | 
						
							| 65 | 64 | ssrdv |  | 
						
							| 66 | 19 35 65 | pm2.61da2ne |  |