Metamath Proof Explorer


Theorem ppiltx

Description: The prime-counting function ppi is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppiltx A+π_A<A

Proof

Step Hyp Ref Expression
1 rpre A+A
2 ppicl Aπ_A0
3 1 2 syl A+π_A0
4 3 nn0red A+π_A
5 4 adantr A+Aπ_A
6 reflcl AA
7 1 6 syl A+A
8 7 adantr A+AA
9 1 adantr A+AA
10 fzfi 1AFin
11 inss1 2A2A
12 2eluzge1 21
13 fzss1 212A1A
14 12 13 mp1i A+A2A1A
15 simpr A+AA
16 nnuz =1
17 15 16 eleqtrdi A+AA1
18 eluzfz1 A111A
19 17 18 syl A+A11A
20 1lt2 1<2
21 1re 1
22 2re 2
23 21 22 ltnlei 1<2¬21
24 20 23 mpbi ¬21
25 elfzle1 12A21
26 24 25 mto ¬12A
27 nelne1 11A¬12A1A2A
28 19 26 27 sylancl A+A1A2A
29 28 necomd A+A2A1A
30 df-pss 2A1A2A1A2A1A
31 14 29 30 sylanbrc A+A2A1A
32 sspsstr 2A2A2A1A2A1A
33 11 31 32 sylancr A+A2A1A
34 php3 1AFin2A1A2A1A
35 10 33 34 sylancr A+A2A1A
36 fzfi 2AFin
37 ssfi 2AFin2A2A2AFin
38 36 11 37 mp2an 2AFin
39 hashsdom 2AFin1AFin2A<1A2A1A
40 38 10 39 mp2an 2A<1A2A1A
41 35 40 sylibr A+A2A<1A
42 1 flcld A+A
43 ppival2 Aπ_A=2A
44 42 43 syl A+π_A=2A
45 ppifl Aπ_A=π_A
46 1 45 syl A+π_A=π_A
47 44 46 eqtr3d A+2A=π_A
48 47 adantr A+A2A=π_A
49 rpge0 A+0A
50 flge0nn0 A0AA0
51 1 49 50 syl2anc A+A0
52 hashfz1 A01A=A
53 51 52 syl A+1A=A
54 53 adantr A+A1A=A
55 41 48 54 3brtr3d A+Aπ_A<A
56 flle AAA
57 9 56 syl A+AAA
58 5 8 9 55 57 ltletrd A+Aπ_A<A
59 46 adantr A+A=0π_A=π_A
60 simpr A+A=0A=0
61 60 fveq2d A+A=0π_A=π_0
62 2pos 0<2
63 0re 0
64 ppieq0 0π_0=00<2
65 63 64 ax-mp π_0=00<2
66 62 65 mpbir π_0=0
67 61 66 eqtrdi A+A=0π_A=0
68 59 67 eqtr3d A+A=0π_A=0
69 rpgt0 A+0<A
70 69 adantr A+A=00<A
71 68 70 eqbrtrd A+A=0π_A<A
72 elnn0 A0AA=0
73 51 72 sylib A+AA=0
74 58 71 73 mpjaodan A+π_A<A