Metamath Proof Explorer


Theorem preimageiingt

Description: A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimageiingt.x xφ
preimageiingt.b φxAB*
preimageiingt.c φC
Assertion preimageiingt φxA|CB=nxA|C1n<B

Proof

Step Hyp Ref Expression
1 preimageiingt.x xφ
2 preimageiingt.b φxAB*
3 preimageiingt.c φC
4 simpllr φxACBnxA
5 3 adantr φnC
6 nnrecre n1n
7 6 adantl φn1n
8 5 7 resubcld φnC1n
9 8 rexrd φnC1n*
10 9 ad4ant14 φxACBnC1n*
11 3 rexrd φC*
12 11 ad3antrrr φxACBnC*
13 2 ad2antrr φxACBnB*
14 nnrp nn+
15 rpreccl n+1n+
16 14 15 syl n1n+
17 16 adantl φn1n+
18 5 17 ltsubrpd φnC1n<C
19 18 ad4ant14 φxACBnC1n<C
20 simplr φxACBnCB
21 10 12 13 19 20 xrltletrd φxACBnC1n<B
22 4 21 jca φxACBnxAC1n<B
23 rabid xxA|C1n<BxAC1n<B
24 22 23 sylibr φxACBnxxA|C1n<B
25 24 ralrimiva φxACBnxxA|C1n<B
26 vex xV
27 eliin xVxnxA|C1n<BnxxA|C1n<B
28 26 27 ax-mp xnxA|C1n<BnxxA|C1n<B
29 25 28 sylibr φxACBxnxA|C1n<B
30 29 ex φxACBxnxA|C1n<B
31 30 ex φxACBxnxA|C1n<B
32 1 31 ralrimi φxACBxnxA|C1n<B
33 nfcv _x
34 nfrab1 _xxA|C1n<B
35 33 34 nfiin _xnxA|C1n<B
36 35 rabssf xA|CBnxA|C1n<BxACBxnxA|C1n<B
37 32 36 sylibr φxA|CBnxA|C1n<B
38 nnn0
39 iinrab nxA|C1n<B=xA|nC1n<B
40 38 39 ax-mp nxA|C1n<B=xA|nC1n<B
41 40 a1i φnxA|C1n<B=xA|nC1n<B
42 9 ad4ant13 φxAnC1n<BC1n*
43 2 ad2antrr φxAnC1n<BB*
44 simpr φxAnC1n<BC1n<B
45 42 43 44 xrltled φxAnC1n<BC1nB
46 45 ex φxAnC1n<BC1nB
47 46 ralimdva φxAnC1n<BnC1nB
48 47 imp φxAnC1n<BnC1nB
49 nfv nφxA
50 nfra1 nnC1n<B
51 49 50 nfan nφxAnC1n<B
52 3 ad2antrr φxAnC1n<BC
53 2 adantr φxAnC1n<BB*
54 51 52 53 xrralrecnnge φxAnC1n<BCBnC1nB
55 48 54 mpbird φxAnC1n<BCB
56 55 ex φxAnC1n<BCB
57 56 ex φxAnC1n<BCB
58 1 57 ralrimi φxAnC1n<BCB
59 ss2rab xA|nC1n<BxA|CBxAnC1n<BCB
60 58 59 sylibr φxA|nC1n<BxA|CB
61 41 60 eqsstrd φnxA|C1n<BxA|CB
62 37 61 eqssd φxA|CB=nxA|C1n<B