Step |
Hyp |
Ref |
Expression |
1 |
|
fmtnorn |
|
2 |
|
fmtnorn |
|
3 |
|
2a1 |
|
4 |
3
|
2a1d |
|
5 |
|
fmtnonn |
|
6 |
5
|
ad2antrl |
|
7 |
6
|
adantr |
|
8 |
|
eleq1 |
|
9 |
8
|
ad2antll |
|
10 |
7 9
|
mpbid |
|
11 |
|
fmtnonn |
|
12 |
11
|
ad2antll |
|
13 |
12
|
adantr |
|
14 |
|
eleq1 |
|
15 |
14
|
ad2antrl |
|
16 |
13 15
|
mpbid |
|
17 |
|
simpll |
|
18 |
|
simplr |
|
19 |
|
fveq2 |
|
20 |
19
|
con3i |
|
21 |
20
|
adantl |
|
22 |
21
|
neqned |
|
23 |
|
goldbachth |
|
24 |
17 18 22 23
|
syl3anc |
|
25 |
24
|
ex |
|
26 |
|
eqeq12 |
|
27 |
26
|
notbid |
|
28 |
|
oveq12 |
|
29 |
28
|
eqeq1d |
|
30 |
27 29
|
imbi12d |
|
31 |
30
|
ancoms |
|
32 |
25 31
|
syl5ibcom |
|
33 |
32
|
com23 |
|
34 |
33
|
impcom |
|
35 |
34
|
imp |
|
36 |
|
prmnn |
|
37 |
|
coprmdvds1 |
|
38 |
37
|
imp |
|
39 |
36 38
|
syl3anr1 |
|
40 |
|
eleq1 |
|
41 |
|
1nprm |
|
42 |
41
|
pm2.21i |
|
43 |
40 42
|
syl6bi |
|
44 |
43
|
com12 |
|
45 |
44
|
a1d |
|
46 |
45
|
3ad2ant1 |
|
47 |
46
|
impcom |
|
48 |
39 47
|
mpd |
|
49 |
48
|
ex |
|
50 |
10 16 35 49
|
syl3anc |
|
51 |
50
|
exp43 |
|
52 |
4 51
|
pm2.61i |
|
53 |
52
|
rexlimdva |
|
54 |
53
|
com23 |
|
55 |
54
|
rexlimiv |
|
56 |
55
|
imp |
|
57 |
1 2 56
|
syl2anb |
|