Description: Lemma 2 for prmdvdsfmtnof1 . (Contributed by AV, 3-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | prmdvdsfmtnof1lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtnorn | |
|
2 | fmtnorn | |
|
3 | 2a1 | |
|
4 | 3 | 2a1d | |
5 | fmtnonn | |
|
6 | 5 | ad2antrl | |
7 | 6 | adantr | |
8 | eleq1 | |
|
9 | 8 | ad2antll | |
10 | 7 9 | mpbid | |
11 | fmtnonn | |
|
12 | 11 | ad2antll | |
13 | 12 | adantr | |
14 | eleq1 | |
|
15 | 14 | ad2antrl | |
16 | 13 15 | mpbid | |
17 | simpll | |
|
18 | simplr | |
|
19 | fveq2 | |
|
20 | 19 | con3i | |
21 | 20 | adantl | |
22 | 21 | neqned | |
23 | goldbachth | |
|
24 | 17 18 22 23 | syl3anc | |
25 | 24 | ex | |
26 | eqeq12 | |
|
27 | 26 | notbid | |
28 | oveq12 | |
|
29 | 28 | eqeq1d | |
30 | 27 29 | imbi12d | |
31 | 30 | ancoms | |
32 | 25 31 | syl5ibcom | |
33 | 32 | com23 | |
34 | 33 | impcom | |
35 | 34 | imp | |
36 | prmnn | |
|
37 | coprmdvds1 | |
|
38 | 37 | imp | |
39 | 36 38 | syl3anr1 | |
40 | eleq1 | |
|
41 | 1nprm | |
|
42 | 41 | pm2.21i | |
43 | 40 42 | syl6bi | |
44 | 43 | com12 | |
45 | 44 | a1d | |
46 | 45 | 3ad2ant1 | |
47 | 46 | impcom | |
48 | 39 47 | mpd | |
49 | 48 | ex | |
50 | 10 16 35 49 | syl3anc | |
51 | 50 | exp43 | |
52 | 4 51 | pm2.61i | |
53 | 52 | rexlimdva | |
54 | 53 | com23 | |
55 | 54 | rexlimiv | |
56 | 55 | imp | |
57 | 1 2 56 | syl2anb | |