Description: Alternate proof of prmgap : in contrast to prmgap , where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020) (Revised by AV, 27-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | prmgaplcm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | fzssz | |
|
3 | 2 | a1i | |
4 | fzfi | |
|
5 | 4 | a1i | |
6 | 0nelfz1 | |
|
7 | 6 | a1i | |
8 | lcmfn0cl | |
|
9 | 3 5 7 8 | syl3anc | |
10 | 9 | adantl | |
11 | eqid | |
|
12 | 10 11 | fmptd | |
13 | nnex | |
|
14 | 13 13 | pm3.2i | |
15 | elmapg | |
|
16 | 14 15 | mp1i | |
17 | 12 16 | mpbird | |
18 | prmgaplcmlem2 | |
|
19 | eqidd | |
|
20 | oveq2 | |
|
21 | 20 | fveq2d | |
22 | 21 | adantl | |
23 | simpl | |
|
24 | fzssz | |
|
25 | fzfi | |
|
26 | 24 25 | pm3.2i | |
27 | lcmfcl | |
|
28 | 26 27 | mp1i | |
29 | 19 22 23 28 | fvmptd | |
30 | 29 | oveq1d | |
31 | 30 | oveq1d | |
32 | 18 31 | breqtrrd | |
33 | 32 | ralrimiva | |
34 | 1 17 33 | prmgaplem8 | |
35 | 34 | rgen | |