Metamath Proof Explorer


Theorem probfinmeasbALTV

Description: Alternate version of probfinmeasb . (Contributed by Thierry Arnoux, 17-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion probfinmeasbALTV MmeasuresSMS+xSMx÷𝑒MSProb

Proof

Step Hyp Ref Expression
1 measdivcstALTV MmeasuresSMS+xSMx÷𝑒MSmeasuresS
2 ovex Mx÷𝑒MSV
3 2 rgenw xSMx÷𝑒MSV
4 dmmptg xSMx÷𝑒MSVdomxSMx÷𝑒MS=S
5 3 4 ax-mp domxSMx÷𝑒MS=S
6 5 fveq2i measuresdomxSMx÷𝑒MS=measuresS
7 1 6 eleqtrrdi MmeasuresSMS+xSMx÷𝑒MSmeasuresdomxSMx÷𝑒MS
8 measbasedom xSMx÷𝑒MSranmeasuresxSMx÷𝑒MSmeasuresdomxSMx÷𝑒MS
9 7 8 sylibr MmeasuresSMS+xSMx÷𝑒MSranmeasures
10 5 unieqi domxSMx÷𝑒MS=S
11 10 fveq2i xSMx÷𝑒MSdomxSMx÷𝑒MS=xSMx÷𝑒MSS
12 measbase MmeasuresSSransigAlgebra
13 isrnsigau SransigAlgebraS𝒫SSSySSySy𝒫SyωyS
14 13 simprd SransigAlgebraSSySSySy𝒫SyωyS
15 14 simp1d SransigAlgebraSS
16 12 15 syl MmeasuresSSS
17 id MS+MS+
18 17 17 rpxdivcld MS+MS÷𝑒MS+
19 16 18 anim12i MmeasuresSMS+SSMS÷𝑒MS+
20 fveq2 x=SMx=MS
21 20 oveq1d x=SMx÷𝑒MS=MS÷𝑒MS
22 eqid xSMx÷𝑒MS=xSMx÷𝑒MS
23 21 22 fvmptg SSMS÷𝑒MS+xSMx÷𝑒MSS=MS÷𝑒MS
24 19 23 syl MmeasuresSMS+xSMx÷𝑒MSS=MS÷𝑒MS
25 rpre MS+MS
26 rpne0 MS+MS0
27 xdivid MSMS0MS÷𝑒MS=1
28 25 26 27 syl2anc MS+MS÷𝑒MS=1
29 28 adantl MmeasuresSMS+MS÷𝑒MS=1
30 24 29 eqtrd MmeasuresSMS+xSMx÷𝑒MSS=1
31 11 30 eqtrid MmeasuresSMS+xSMx÷𝑒MSdomxSMx÷𝑒MS=1
32 elprob xSMx÷𝑒MSProbxSMx÷𝑒MSranmeasuresxSMx÷𝑒MSdomxSMx÷𝑒MS=1
33 9 31 32 sylanbrc MmeasuresSMS+xSMx÷𝑒MSProb