Description: Any primitive N -th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idomsubgmo.g | |
|
proot1mul.o | |
||
proot1mul.k | |
||
Assertion | proot1mul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomsubgmo.g | |
|
2 | proot1mul.o | |
|
3 | proot1mul.k | |
|
4 | simpll | |
|
5 | isidom | |
|
6 | 5 | simprbi | |
7 | domnring | |
|
8 | eqid | |
|
9 | 8 1 | unitgrp | |
10 | 4 6 7 9 | 4syl | |
11 | eqid | |
|
12 | 11 | subgacs | |
13 | acsmre | |
|
14 | 10 12 13 | 3syl | |
15 | simprl | |
|
16 | 11 2 | odf | |
17 | ffn | |
|
18 | fniniseg | |
|
19 | 16 17 18 | mp2b | |
20 | 15 19 | sylib | |
21 | 20 | simpld | |
22 | 21 | snssd | |
23 | 14 3 22 | mrcssidd | |
24 | snssg | |
|
25 | 15 24 | syl | |
26 | 23 25 | mpbird | |
27 | 1 | idomsubgmo | |
28 | 27 | adantr | |
29 | 3 | mrccl | |
30 | 14 22 29 | syl2anc | |
31 | 20 | simprd | |
32 | simplr | |
|
33 | 31 32 | eqeltrd | |
34 | 11 2 3 | odhash2 | |
35 | 10 21 33 34 | syl3anc | |
36 | 35 31 | eqtrd | |
37 | simprr | |
|
38 | fniniseg | |
|
39 | 16 17 38 | mp2b | |
40 | 37 39 | sylib | |
41 | 40 | simpld | |
42 | 41 | snssd | |
43 | 3 | mrccl | |
44 | 14 42 43 | syl2anc | |
45 | 40 | simprd | |
46 | 45 32 | eqeltrd | |
47 | 11 2 3 | odhash2 | |
48 | 10 41 46 47 | syl3anc | |
49 | 48 45 | eqtrd | |
50 | fveqeq2 | |
|
51 | fveqeq2 | |
|
52 | 50 51 | rmoi | |
53 | 28 30 36 44 49 52 | syl122anc | |
54 | 26 53 | eleqtrd | |