Metamath Proof Explorer


Theorem proot1mul

Description: Any primitive N -th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015)

Ref Expression
Hypotheses idomsubgmo.g G=mulGrpR𝑠UnitR
proot1mul.o O=odG
proot1mul.k K=mrClsSubGrpG
Assertion proot1mul RIDomnNXO-1NYO-1NXKY

Proof

Step Hyp Ref Expression
1 idomsubgmo.g G=mulGrpR𝑠UnitR
2 proot1mul.o O=odG
3 proot1mul.k K=mrClsSubGrpG
4 simpll RIDomnNXO-1NYO-1NRIDomn
5 isidom RIDomnRCRingRDomn
6 5 simprbi RIDomnRDomn
7 domnring RDomnRRing
8 eqid UnitR=UnitR
9 8 1 unitgrp RRingGGrp
10 4 6 7 9 4syl RIDomnNXO-1NYO-1NGGrp
11 eqid BaseG=BaseG
12 11 subgacs GGrpSubGrpGACSBaseG
13 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
14 10 12 13 3syl RIDomnNXO-1NYO-1NSubGrpGMooreBaseG
15 simprl RIDomnNXO-1NYO-1NXO-1N
16 11 2 odf O:BaseG0
17 ffn O:BaseG0OFnBaseG
18 fniniseg OFnBaseGXO-1NXBaseGOX=N
19 16 17 18 mp2b XO-1NXBaseGOX=N
20 15 19 sylib RIDomnNXO-1NYO-1NXBaseGOX=N
21 20 simpld RIDomnNXO-1NYO-1NXBaseG
22 21 snssd RIDomnNXO-1NYO-1NXBaseG
23 14 3 22 mrcssidd RIDomnNXO-1NYO-1NXKX
24 snssg XO-1NXKXXKX
25 15 24 syl RIDomnNXO-1NYO-1NXKXXKX
26 23 25 mpbird RIDomnNXO-1NYO-1NXKX
27 1 idomsubgmo RIDomnN*xSubGrpGx=N
28 27 adantr RIDomnNXO-1NYO-1N*xSubGrpGx=N
29 3 mrccl SubGrpGMooreBaseGXBaseGKXSubGrpG
30 14 22 29 syl2anc RIDomnNXO-1NYO-1NKXSubGrpG
31 20 simprd RIDomnNXO-1NYO-1NOX=N
32 simplr RIDomnNXO-1NYO-1NN
33 31 32 eqeltrd RIDomnNXO-1NYO-1NOX
34 11 2 3 odhash2 GGrpXBaseGOXKX=OX
35 10 21 33 34 syl3anc RIDomnNXO-1NYO-1NKX=OX
36 35 31 eqtrd RIDomnNXO-1NYO-1NKX=N
37 simprr RIDomnNXO-1NYO-1NYO-1N
38 fniniseg OFnBaseGYO-1NYBaseGOY=N
39 16 17 38 mp2b YO-1NYBaseGOY=N
40 37 39 sylib RIDomnNXO-1NYO-1NYBaseGOY=N
41 40 simpld RIDomnNXO-1NYO-1NYBaseG
42 41 snssd RIDomnNXO-1NYO-1NYBaseG
43 3 mrccl SubGrpGMooreBaseGYBaseGKYSubGrpG
44 14 42 43 syl2anc RIDomnNXO-1NYO-1NKYSubGrpG
45 40 simprd RIDomnNXO-1NYO-1NOY=N
46 45 32 eqeltrd RIDomnNXO-1NYO-1NOY
47 11 2 3 odhash2 GGrpYBaseGOYKY=OY
48 10 41 46 47 syl3anc RIDomnNXO-1NYO-1NKY=OY
49 48 45 eqtrd RIDomnNXO-1NYO-1NKY=N
50 fveqeq2 x=KXx=NKX=N
51 fveqeq2 x=KYx=NKY=N
52 50 51 rmoi *xSubGrpGx=NKXSubGrpGKX=NKYSubGrpGKY=NKX=KY
53 28 30 36 44 49 52 syl122anc RIDomnNXO-1NYO-1NKX=KY
54 26 53 eleqtrd RIDomnNXO-1NYO-1NXKY