Metamath Proof Explorer


Theorem pwfseqlem4a

Description: Lemma for pwfseqlem4 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses pwfseqlem4.g φG:𝒫A1-1nωAn
pwfseqlem4.x φXA
pwfseqlem4.h φH:ω1-1 ontoX
pwfseqlem4.ps ψxArx×xrWexωx
pwfseqlem4.k φψK:nωxn1-1x
pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
pwfseqlem4.f F=xV,rVifxFinHcardxDzω|¬Dzx
Assertion pwfseqlem4a φaAsa×asWeaaFsA

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φG:𝒫A1-1nωAn
2 pwfseqlem4.x φXA
3 pwfseqlem4.h φH:ω1-1 ontoX
4 pwfseqlem4.ps ψxArx×xrWexωx
5 pwfseqlem4.k φψK:nωxn1-1x
6 pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
7 pwfseqlem4.f F=xV,rVifxFinHcardxDzω|¬Dzx
8 isfinite aFinaω
9 simpr φaFinaFin
10 vex sV
11 1 2 3 4 5 6 7 pwfseqlem2 aFinsVaFs=Hcarda
12 9 10 11 sylancl φaFinaFs=Hcarda
13 f1of H:ω1-1 ontoXH:ωX
14 3 13 syl φH:ωX
15 14 2 fssd φH:ωA
16 ficardom aFincardaω
17 ffvelcdm H:ωAcardaωHcardaA
18 15 16 17 syl2an φaFinHcardaA
19 12 18 eqeltrd φaFinaFsA
20 19 ex φaFinaFsA
21 20 adantr φaAsa×asWeaaFinaFsA
22 8 21 biimtrrid φaAsa×asWeaaωaFsA
23 omelon ωOn
24 onenon ωOnωdomcard
25 23 24 ax-mp ωdomcard
26 simpr3 φaAsa×asWeasWea
27 26 19.8ad φaAsa×asWeassWea
28 ween adomcardssWea
29 27 28 sylibr φaAsa×asWeaadomcard
30 domtri2 ωdomcardadomcardωa¬aω
31 25 29 30 sylancr φaAsa×asWeaωa¬aω
32 nfv rφaAsa×asWeaωa
33 nfcv _ra
34 nfmpo2 _rxV,rVifxFinHcardxDzω|¬Dzx
35 7 34 nfcxfr _rF
36 nfcv _rs
37 33 35 36 nfov _raFs
38 37 nfel1 raFsAa
39 32 38 nfim rφaAsa×asWeaωaaFsAa
40 sseq1 r=sra×asa×a
41 weeq1 r=srWeasWea
42 40 41 3anbi23d r=saAra×arWeaaAsa×asWea
43 42 anbi1d r=saAra×arWeaωaaAsa×asWeaωa
44 43 anbi2d r=sφaAra×arWeaωaφaAsa×asWeaωa
45 oveq2 r=saFr=aFs
46 45 eleq1d r=saFrAaaFsAa
47 44 46 imbi12d r=sφaAra×arWeaωaaFrAaφaAsa×asWeaωaaFsAa
48 nfv xφaAra×arWeaωa
49 nfcv _xa
50 nfmpo1 _xxV,rVifxFinHcardxDzω|¬Dzx
51 7 50 nfcxfr _xF
52 nfcv _xr
53 49 51 52 nfov _xaFr
54 53 nfel1 xaFrAa
55 48 54 nfim xφaAra×arWeaωaaFrAa
56 sseq1 x=axAaA
57 xpeq12 x=ax=ax×x=a×a
58 57 anidms x=ax×x=a×a
59 58 sseq2d x=arx×xra×a
60 weeq2 x=arWexrWea
61 56 59 60 3anbi123d x=axArx×xrWexaAra×arWea
62 breq2 x=aωxωa
63 61 62 anbi12d x=axArx×xrWexωxaAra×arWeaωa
64 4 63 bitrid x=aψaAra×arWeaωa
65 64 anbi2d x=aφψφaAra×arWeaωa
66 oveq1 x=axFr=aFr
67 difeq2 x=aAx=Aa
68 66 67 eleq12d x=axFrAxaFrAa
69 65 68 imbi12d x=aφψxFrAxφaAra×arWeaωaaFrAa
70 1 2 3 4 5 6 7 pwfseqlem3 φψxFrAx
71 55 69 70 chvarfv φaAra×arWeaωaaFrAa
72 39 47 71 chvarfv φaAsa×asWeaωaaFsAa
73 72 eldifad φaAsa×asWeaωaaFsA
74 73 expr φaAsa×asWeaωaaFsA
75 31 74 sylbird φaAsa×asWea¬aωaFsA
76 22 75 pm2.61d φaAsa×asWeaaFsA