Metamath Proof Explorer


Theorem pwfseqlem4

Description: Lemma for pwfseq . Derive a final contradiction from the function F in pwfseqlem3 . Applying fpwwe2 to it, we get a certain maximal well-ordered subset Z , but the defining property ( Z F ( WZ ) ) e. Z contradicts our assumption on F , so we are reduced to the case of Z finite. This too is a contradiction, though, because Z and its preimage under ( WZ ) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem4.g φG:𝒫A1-1nωAn
pwfseqlem4.x φXA
pwfseqlem4.h φH:ω1-1 ontoX
pwfseqlem4.ps ψxArx×xrWexωx
pwfseqlem4.k φψK:nωxn1-1x
pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
pwfseqlem4.f F=xV,rVifxFinHcardxDzω|¬Dzx
pwfseqlem4.w W=as|aAsa×asWeaba[˙s-1b/v]˙vFsv×v=b
pwfseqlem4.z Z=domW
Assertion pwfseqlem4 ¬φ

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φG:𝒫A1-1nωAn
2 pwfseqlem4.x φXA
3 pwfseqlem4.h φH:ω1-1 ontoX
4 pwfseqlem4.ps ψxArx×xrWexωx
5 pwfseqlem4.k φψK:nωxn1-1x
6 pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
7 pwfseqlem4.f F=xV,rVifxFinHcardxDzω|¬Dzx
8 pwfseqlem4.w W=as|aAsa×asWeaba[˙s-1b/v]˙vFsv×v=b
9 pwfseqlem4.z Z=domW
10 eqid Z=Z
11 eqid WZ=WZ
12 10 11 pm3.2i Z=ZWZ=WZ
13 omex ωV
14 ovex AnV
15 13 14 iunex nωAnV
16 f1dmex G:𝒫A1-1nωAnnωAnV𝒫AV
17 1 15 16 sylancl φ𝒫AV
18 pwexb AV𝒫AV
19 17 18 sylibr φAV
20 1 2 3 4 5 6 7 pwfseqlem4a φaAsa×asWeaaFsA
21 8 19 20 9 fpwwe2 φZWWZZFWZZZ=ZWZ=WZ
22 12 21 mpbiri φZWWZZFWZZ
23 22 simprd φZFWZZ
24 22 simpld φZWWZ
25 8 19 fpwwe2lem2 φZWWZZAWZZ×ZWZWeZbZ[˙WZ-1b/v]˙vFWZv×v=b
26 24 25 mpbid φZAWZZ×ZWZWeZbZ[˙WZ-1b/v]˙vFWZv×v=b
27 26 simpld φZAWZZ×Z
28 27 simpld φZA
29 19 28 ssexd φZV
30 sseq1 a=ZaAZA
31 id a=Za=Z
32 31 sqxpeqd a=Za×a=Z×Z
33 32 sseq2d a=ZWZa×aWZZ×Z
34 weeq2 a=ZWZWeaWZWeZ
35 30 33 34 3anbi123d a=ZaAWZa×aWZWeaZAWZZ×ZWZWeZ
36 35 anbi2d a=ZφaAWZa×aWZWeaφZAWZZ×ZWZWeZ
37 id ZAWZZ×ZWZWeZZAWZZ×ZWZWeZ
38 37 3expa ZAWZZ×ZWZWeZZAWZZ×ZWZWeZ
39 38 adantrr ZAWZZ×ZWZWeZbZ[˙WZ-1b/v]˙vFWZv×v=bZAWZZ×ZWZWeZ
40 26 39 syl φZAWZZ×ZWZWeZ
41 40 pm4.71i φφZAWZZ×ZWZWeZ
42 36 41 bitr4di a=ZφaAWZa×aWZWeaφ
43 oveq1 a=ZaFWZ=ZFWZ
44 43 31 eleq12d a=ZaFWZaZFWZZ
45 breq1 a=ZaωZω
46 44 45 imbi12d a=ZaFWZaaωZFWZZZω
47 42 46 imbi12d a=ZφaAWZa×aWZWeaaFWZaaωφZFWZZZω
48 fvex WZV
49 sseq1 s=WZsa×aWZa×a
50 weeq1 s=WZsWeaWZWea
51 49 50 3anbi23d s=WZaAsa×asWeaaAWZa×aWZWea
52 51 anbi2d s=WZφaAsa×asWeaφaAWZa×aWZWea
53 oveq2 s=WZaFs=aFWZ
54 53 eleq1d s=WZaFsaaFWZa
55 54 imbi1d s=WZaFsaaωaFWZaaω
56 52 55 imbi12d s=WZφaAsa×asWeaaFsaaωφaAWZa×aWZWeaaFWZaaω
57 omelon ωOn
58 onenon ωOnωdomcard
59 57 58 ax-mp ωdomcard
60 simpr3 φaAsa×asWeasWea
61 60 19.8ad φaAsa×asWeassWea
62 ween adomcardssWea
63 61 62 sylibr φaAsa×asWeaadomcard
64 domtri2 ωdomcardadomcardωa¬aω
65 59 63 64 sylancr φaAsa×asWeaωa¬aω
66 nfv rφaAsa×asWeaωa
67 nfcv _ra
68 nfmpo2 _rxV,rVifxFinHcardxDzω|¬Dzx
69 7 68 nfcxfr _rF
70 nfcv _rs
71 67 69 70 nfov _raFs
72 71 nfel1 raFsAa
73 66 72 nfim rφaAsa×asWeaωaaFsAa
74 sseq1 r=sra×asa×a
75 weeq1 r=srWeasWea
76 74 75 3anbi23d r=saAra×arWeaaAsa×asWea
77 76 anbi1d r=saAra×arWeaωaaAsa×asWeaωa
78 77 anbi2d r=sφaAra×arWeaωaφaAsa×asWeaωa
79 oveq2 r=saFr=aFs
80 79 eleq1d r=saFrAaaFsAa
81 78 80 imbi12d r=sφaAra×arWeaωaaFrAaφaAsa×asWeaωaaFsAa
82 nfv xφaAra×arWeaωa
83 nfcv _xa
84 nfmpo1 _xxV,rVifxFinHcardxDzω|¬Dzx
85 7 84 nfcxfr _xF
86 nfcv _xr
87 83 85 86 nfov _xaFr
88 87 nfel1 xaFrAa
89 82 88 nfim xφaAra×arWeaωaaFrAa
90 sseq1 x=axAaA
91 xpeq12 x=ax=ax×x=a×a
92 91 anidms x=ax×x=a×a
93 92 sseq2d x=arx×xra×a
94 weeq2 x=arWexrWea
95 90 93 94 3anbi123d x=axArx×xrWexaAra×arWea
96 breq2 x=aωxωa
97 95 96 anbi12d x=axArx×xrWexωxaAra×arWeaωa
98 4 97 bitrid x=aψaAra×arWeaωa
99 98 anbi2d x=aφψφaAra×arWeaωa
100 oveq1 x=axFr=aFr
101 difeq2 x=aAx=Aa
102 100 101 eleq12d x=axFrAxaFrAa
103 99 102 imbi12d x=aφψxFrAxφaAra×arWeaωaaFrAa
104 1 2 3 4 5 6 7 pwfseqlem3 φψxFrAx
105 89 103 104 chvarfv φaAra×arWeaωaaFrAa
106 73 81 105 chvarfv φaAsa×asWeaωaaFsAa
107 106 eldifbd φaAsa×asWeaωa¬aFsa
108 107 expr φaAsa×asWeaωa¬aFsa
109 65 108 sylbird φaAsa×asWea¬aω¬aFsa
110 109 con4d φaAsa×asWeaaFsaaω
111 48 56 110 vtocl φaAWZa×aWZWeaaFWZaaω
112 47 111 vtoclg ZVφZFWZZZω
113 29 112 mpcom φZFWZZZω
114 23 113 mpd φZω
115 isfinite ZFinZω
116 114 115 sylibr φZFin
117 1 2 3 4 5 6 7 pwfseqlem2 ZFinWZVZFWZ=HcardZ
118 116 48 117 sylancl φZFWZ=HcardZ
119 118 23 eqeltrrd φHcardZZ
120 8 19 24 fpwwe2lem3 φHcardZZWZ-1HcardZFWZWZ-1HcardZ×WZ-1HcardZ=HcardZ
121 119 120 mpdan φWZ-1HcardZFWZWZ-1HcardZ×WZ-1HcardZ=HcardZ
122 cnvimass WZ-1HcardZdomWZ
123 27 simprd φWZZ×Z
124 dmss WZZ×ZdomWZdomZ×Z
125 123 124 syl φdomWZdomZ×Z
126 dmxpss domZ×ZZ
127 125 126 sstrdi φdomWZZ
128 122 127 sstrid φWZ-1HcardZZ
129 116 128 ssfid φWZ-1HcardZFin
130 48 inex1 WZWZ-1HcardZ×WZ-1HcardZV
131 1 2 3 4 5 6 7 pwfseqlem2 WZ-1HcardZFinWZWZ-1HcardZ×WZ-1HcardZVWZ-1HcardZFWZWZ-1HcardZ×WZ-1HcardZ=HcardWZ-1HcardZ
132 129 130 131 sylancl φWZ-1HcardZFWZWZ-1HcardZ×WZ-1HcardZ=HcardWZ-1HcardZ
133 121 132 eqtr3d φHcardZ=HcardWZ-1HcardZ
134 f1of1 H:ω1-1 ontoXH:ω1-1X
135 3 134 syl φH:ω1-1X
136 ficardom ZFincardZω
137 116 136 syl φcardZω
138 ficardom WZ-1HcardZFincardWZ-1HcardZω
139 129 138 syl φcardWZ-1HcardZω
140 f1fveq H:ω1-1XcardZωcardWZ-1HcardZωHcardZ=HcardWZ-1HcardZcardZ=cardWZ-1HcardZ
141 135 137 139 140 syl12anc φHcardZ=HcardWZ-1HcardZcardZ=cardWZ-1HcardZ
142 133 141 mpbid φcardZ=cardWZ-1HcardZ
143 142 eqcomd φcardWZ-1HcardZ=cardZ
144 finnum WZ-1HcardZFinWZ-1HcardZdomcard
145 129 144 syl φWZ-1HcardZdomcard
146 finnum ZFinZdomcard
147 116 146 syl φZdomcard
148 carden2 WZ-1HcardZdomcardZdomcardcardWZ-1HcardZ=cardZWZ-1HcardZZ
149 145 147 148 syl2anc φcardWZ-1HcardZ=cardZWZ-1HcardZZ
150 143 149 mpbid φWZ-1HcardZZ
151 dfpss2 WZ-1HcardZZWZ-1HcardZZ¬WZ-1HcardZ=Z
152 151 baib WZ-1HcardZZWZ-1HcardZZ¬WZ-1HcardZ=Z
153 128 152 syl φWZ-1HcardZZ¬WZ-1HcardZ=Z
154 php3 ZFinWZ-1HcardZZWZ-1HcardZZ
155 sdomnen WZ-1HcardZZ¬WZ-1HcardZZ
156 154 155 syl ZFinWZ-1HcardZZ¬WZ-1HcardZZ
157 156 ex ZFinWZ-1HcardZZ¬WZ-1HcardZZ
158 116 157 syl φWZ-1HcardZZ¬WZ-1HcardZZ
159 153 158 sylbird φ¬WZ-1HcardZ=Z¬WZ-1HcardZZ
160 150 159 mt4d φWZ-1HcardZ=Z
161 119 160 eleqtrrd φHcardZWZ-1HcardZ
162 fvex HcardZV
163 162 eliniseg HcardZVHcardZWZ-1HcardZHcardZWZHcardZ
164 162 163 ax-mp HcardZWZ-1HcardZHcardZWZHcardZ
165 161 164 sylib φHcardZWZHcardZ
166 26 simprd φWZWeZbZ[˙WZ-1b/v]˙vFWZv×v=b
167 166 simpld φWZWeZ
168 weso WZWeZWZOrZ
169 167 168 syl φWZOrZ
170 sonr WZOrZHcardZZ¬HcardZWZHcardZ
171 169 119 170 syl2anc φ¬HcardZWZHcardZ
172 165 171 pm2.65i ¬φ