Step |
Hyp |
Ref |
Expression |
1 |
|
pwfseqlem4.g |
|- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
2 |
|
pwfseqlem4.x |
|- ( ph -> X C_ A ) |
3 |
|
pwfseqlem4.h |
|- ( ph -> H : _om -1-1-onto-> X ) |
4 |
|
pwfseqlem4.ps |
|- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
5 |
|
pwfseqlem4.k |
|- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
6 |
|
pwfseqlem4.d |
|- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
7 |
|
pwfseqlem4.f |
|- F = ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
8 |
|
pwfseqlem4.w |
|- W = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. b e. a [. ( `' s " { b } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = b ) ) } |
9 |
|
pwfseqlem4.z |
|- Z = U. dom W |
10 |
|
eqid |
|- Z = Z |
11 |
|
eqid |
|- ( W ` Z ) = ( W ` Z ) |
12 |
10 11
|
pm3.2i |
|- ( Z = Z /\ ( W ` Z ) = ( W ` Z ) ) |
13 |
|
omex |
|- _om e. _V |
14 |
|
ovex |
|- ( A ^m n ) e. _V |
15 |
13 14
|
iunex |
|- U_ n e. _om ( A ^m n ) e. _V |
16 |
|
f1dmex |
|- ( ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) /\ U_ n e. _om ( A ^m n ) e. _V ) -> ~P A e. _V ) |
17 |
1 15 16
|
sylancl |
|- ( ph -> ~P A e. _V ) |
18 |
|
pwexb |
|- ( A e. _V <-> ~P A e. _V ) |
19 |
17 18
|
sylibr |
|- ( ph -> A e. _V ) |
20 |
1 2 3 4 5 6 7
|
pwfseqlem4a |
|- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( a F s ) e. A ) |
21 |
8 19 20 9
|
fpwwe2 |
|- ( ph -> ( ( Z W ( W ` Z ) /\ ( Z F ( W ` Z ) ) e. Z ) <-> ( Z = Z /\ ( W ` Z ) = ( W ` Z ) ) ) ) |
22 |
12 21
|
mpbiri |
|- ( ph -> ( Z W ( W ` Z ) /\ ( Z F ( W ` Z ) ) e. Z ) ) |
23 |
22
|
simpld |
|- ( ph -> Z W ( W ` Z ) ) |
24 |
8 19
|
fpwwe2lem2 |
|- ( ph -> ( Z W ( W ` Z ) <-> ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) /\ ( ( W ` Z ) We Z /\ A. b e. Z [. ( `' ( W ` Z ) " { b } ) / v ]. ( v F ( ( W ` Z ) i^i ( v X. v ) ) ) = b ) ) ) ) |
25 |
23 24
|
mpbid |
|- ( ph -> ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) /\ ( ( W ` Z ) We Z /\ A. b e. Z [. ( `' ( W ` Z ) " { b } ) / v ]. ( v F ( ( W ` Z ) i^i ( v X. v ) ) ) = b ) ) ) |
26 |
|
id |
|- ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) |
27 |
26
|
3expa |
|- ( ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) /\ ( W ` Z ) We Z ) -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) |
28 |
27
|
adantrr |
|- ( ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) /\ ( ( W ` Z ) We Z /\ A. b e. Z [. ( `' ( W ` Z ) " { b } ) / v ]. ( v F ( ( W ` Z ) i^i ( v X. v ) ) ) = b ) ) -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) |
29 |
25 28
|
syl |
|- ( ph -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) |
30 |
22
|
simprd |
|- ( ph -> ( Z F ( W ` Z ) ) e. Z ) |
31 |
25
|
simpld |
|- ( ph -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) ) |
32 |
31
|
simpld |
|- ( ph -> Z C_ A ) |
33 |
19 32
|
ssexd |
|- ( ph -> Z e. _V ) |
34 |
|
fvexd |
|- ( ph -> ( W ` Z ) e. _V ) |
35 |
|
simpl |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> a = Z ) |
36 |
35
|
sseq1d |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( a C_ A <-> Z C_ A ) ) |
37 |
|
simpr |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> s = ( W ` Z ) ) |
38 |
35
|
sqxpeqd |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( a X. a ) = ( Z X. Z ) ) |
39 |
37 38
|
sseq12d |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( s C_ ( a X. a ) <-> ( W ` Z ) C_ ( Z X. Z ) ) ) |
40 |
37 35
|
weeq12d |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( s We a <-> ( W ` Z ) We Z ) ) |
41 |
36 39 40
|
3anbi123d |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) <-> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) ) |
42 |
|
oveq12 |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( a F s ) = ( Z F ( W ` Z ) ) ) |
43 |
42 35
|
eleq12d |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( ( a F s ) e. a <-> ( Z F ( W ` Z ) ) e. Z ) ) |
44 |
35
|
breq1d |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( a ~< _om <-> Z ~< _om ) ) |
45 |
43 44
|
imbi12d |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( ( ( a F s ) e. a -> a ~< _om ) <-> ( ( Z F ( W ` Z ) ) e. Z -> Z ~< _om ) ) ) |
46 |
41 45
|
imbi12d |
|- ( ( a = Z /\ s = ( W ` Z ) ) -> ( ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) -> ( ( a F s ) e. a -> a ~< _om ) ) <-> ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) -> ( ( Z F ( W ` Z ) ) e. Z -> Z ~< _om ) ) ) ) |
47 |
|
omelon |
|- _om e. On |
48 |
|
onenon |
|- ( _om e. On -> _om e. dom card ) |
49 |
47 48
|
ax-mp |
|- _om e. dom card |
50 |
|
simpr3 |
|- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> s We a ) |
51 |
50
|
19.8ad |
|- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> E. s s We a ) |
52 |
|
ween |
|- ( a e. dom card <-> E. s s We a ) |
53 |
51 52
|
sylibr |
|- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> a e. dom card ) |
54 |
|
domtri2 |
|- ( ( _om e. dom card /\ a e. dom card ) -> ( _om ~<_ a <-> -. a ~< _om ) ) |
55 |
49 53 54
|
sylancr |
|- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( _om ~<_ a <-> -. a ~< _om ) ) |
56 |
|
nfv |
|- F/ r ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) |
57 |
|
nfcv |
|- F/_ r a |
58 |
|
nfmpo2 |
|- F/_ r ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
59 |
7 58
|
nfcxfr |
|- F/_ r F |
60 |
|
nfcv |
|- F/_ r s |
61 |
57 59 60
|
nfov |
|- F/_ r ( a F s ) |
62 |
61
|
nfel1 |
|- F/ r ( a F s ) e. ( A \ a ) |
63 |
56 62
|
nfim |
|- F/ r ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) |
64 |
|
sseq1 |
|- ( r = s -> ( r C_ ( a X. a ) <-> s C_ ( a X. a ) ) ) |
65 |
|
weeq1 |
|- ( r = s -> ( r We a <-> s We a ) ) |
66 |
64 65
|
3anbi23d |
|- ( r = s -> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) <-> ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) ) |
67 |
66
|
anbi1d |
|- ( r = s -> ( ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) <-> ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) ) |
68 |
67
|
anbi2d |
|- ( r = s -> ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) <-> ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) ) ) |
69 |
|
oveq2 |
|- ( r = s -> ( a F r ) = ( a F s ) ) |
70 |
69
|
eleq1d |
|- ( r = s -> ( ( a F r ) e. ( A \ a ) <-> ( a F s ) e. ( A \ a ) ) ) |
71 |
68 70
|
imbi12d |
|- ( r = s -> ( ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) <-> ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) ) ) |
72 |
|
nfv |
|- F/ x ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) |
73 |
|
nfcv |
|- F/_ x a |
74 |
|
nfmpo1 |
|- F/_ x ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
75 |
7 74
|
nfcxfr |
|- F/_ x F |
76 |
|
nfcv |
|- F/_ x r |
77 |
73 75 76
|
nfov |
|- F/_ x ( a F r ) |
78 |
77
|
nfel1 |
|- F/ x ( a F r ) e. ( A \ a ) |
79 |
72 78
|
nfim |
|- F/ x ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) |
80 |
|
sseq1 |
|- ( x = a -> ( x C_ A <-> a C_ A ) ) |
81 |
|
xpeq12 |
|- ( ( x = a /\ x = a ) -> ( x X. x ) = ( a X. a ) ) |
82 |
81
|
anidms |
|- ( x = a -> ( x X. x ) = ( a X. a ) ) |
83 |
82
|
sseq2d |
|- ( x = a -> ( r C_ ( x X. x ) <-> r C_ ( a X. a ) ) ) |
84 |
|
weeq2 |
|- ( x = a -> ( r We x <-> r We a ) ) |
85 |
80 83 84
|
3anbi123d |
|- ( x = a -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) ) ) |
86 |
|
breq2 |
|- ( x = a -> ( _om ~<_ x <-> _om ~<_ a ) ) |
87 |
85 86
|
anbi12d |
|- ( x = a -> ( ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) <-> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) |
88 |
4 87
|
bitrid |
|- ( x = a -> ( ps <-> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) |
89 |
88
|
anbi2d |
|- ( x = a -> ( ( ph /\ ps ) <-> ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) ) |
90 |
|
oveq1 |
|- ( x = a -> ( x F r ) = ( a F r ) ) |
91 |
|
difeq2 |
|- ( x = a -> ( A \ x ) = ( A \ a ) ) |
92 |
90 91
|
eleq12d |
|- ( x = a -> ( ( x F r ) e. ( A \ x ) <-> ( a F r ) e. ( A \ a ) ) ) |
93 |
89 92
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ ps ) -> ( x F r ) e. ( A \ x ) ) <-> ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) ) ) |
94 |
1 2 3 4 5 6 7
|
pwfseqlem3 |
|- ( ( ph /\ ps ) -> ( x F r ) e. ( A \ x ) ) |
95 |
79 93 94
|
chvarfv |
|- ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) |
96 |
63 71 95
|
chvarfv |
|- ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) |
97 |
96
|
eldifbd |
|- ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> -. ( a F s ) e. a ) |
98 |
97
|
expr |
|- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( _om ~<_ a -> -. ( a F s ) e. a ) ) |
99 |
55 98
|
sylbird |
|- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( -. a ~< _om -> -. ( a F s ) e. a ) ) |
100 |
99
|
con4d |
|- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( ( a F s ) e. a -> a ~< _om ) ) |
101 |
100
|
ex |
|- ( ph -> ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) -> ( ( a F s ) e. a -> a ~< _om ) ) ) |
102 |
33 34 46 101
|
vtocl2d |
|- ( ph -> ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) -> ( ( Z F ( W ` Z ) ) e. Z -> Z ~< _om ) ) ) |
103 |
29 30 102
|
mp2d |
|- ( ph -> Z ~< _om ) |
104 |
|
isfinite |
|- ( Z e. Fin <-> Z ~< _om ) |
105 |
103 104
|
sylibr |
|- ( ph -> Z e. Fin ) |
106 |
|
fvex |
|- ( W ` Z ) e. _V |
107 |
1 2 3 4 5 6 7
|
pwfseqlem2 |
|- ( ( Z e. Fin /\ ( W ` Z ) e. _V ) -> ( Z F ( W ` Z ) ) = ( H ` ( card ` Z ) ) ) |
108 |
105 106 107
|
sylancl |
|- ( ph -> ( Z F ( W ` Z ) ) = ( H ` ( card ` Z ) ) ) |
109 |
108 30
|
eqeltrrd |
|- ( ph -> ( H ` ( card ` Z ) ) e. Z ) |
110 |
8 19 23
|
fpwwe2lem3 |
|- ( ( ph /\ ( H ` ( card ` Z ) ) e. Z ) -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) F ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) = ( H ` ( card ` Z ) ) ) |
111 |
109 110
|
mpdan |
|- ( ph -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) F ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) = ( H ` ( card ` Z ) ) ) |
112 |
|
cnvimass |
|- ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C_ dom ( W ` Z ) |
113 |
31
|
simprd |
|- ( ph -> ( W ` Z ) C_ ( Z X. Z ) ) |
114 |
|
dmss |
|- ( ( W ` Z ) C_ ( Z X. Z ) -> dom ( W ` Z ) C_ dom ( Z X. Z ) ) |
115 |
113 114
|
syl |
|- ( ph -> dom ( W ` Z ) C_ dom ( Z X. Z ) ) |
116 |
|
dmxpss |
|- dom ( Z X. Z ) C_ Z |
117 |
115 116
|
sstrdi |
|- ( ph -> dom ( W ` Z ) C_ Z ) |
118 |
112 117
|
sstrid |
|- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C_ Z ) |
119 |
105 118
|
ssfid |
|- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. Fin ) |
120 |
106
|
inex1 |
|- ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) e. _V |
121 |
1 2 3 4 5 6 7
|
pwfseqlem2 |
|- ( ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. Fin /\ ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) e. _V ) -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) F ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
122 |
119 120 121
|
sylancl |
|- ( ph -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) F ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
123 |
111 122
|
eqtr3d |
|- ( ph -> ( H ` ( card ` Z ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
124 |
|
f1of1 |
|- ( H : _om -1-1-onto-> X -> H : _om -1-1-> X ) |
125 |
3 124
|
syl |
|- ( ph -> H : _om -1-1-> X ) |
126 |
|
ficardom |
|- ( Z e. Fin -> ( card ` Z ) e. _om ) |
127 |
105 126
|
syl |
|- ( ph -> ( card ` Z ) e. _om ) |
128 |
|
ficardom |
|- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. Fin -> ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) e. _om ) |
129 |
119 128
|
syl |
|- ( ph -> ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) e. _om ) |
130 |
|
f1fveq |
|- ( ( H : _om -1-1-> X /\ ( ( card ` Z ) e. _om /\ ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) e. _om ) ) -> ( ( H ` ( card ` Z ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) <-> ( card ` Z ) = ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
131 |
125 127 129 130
|
syl12anc |
|- ( ph -> ( ( H ` ( card ` Z ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) <-> ( card ` Z ) = ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
132 |
123 131
|
mpbid |
|- ( ph -> ( card ` Z ) = ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) |
133 |
132
|
eqcomd |
|- ( ph -> ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) = ( card ` Z ) ) |
134 |
|
finnum |
|- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. Fin -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. dom card ) |
135 |
119 134
|
syl |
|- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. dom card ) |
136 |
|
finnum |
|- ( Z e. Fin -> Z e. dom card ) |
137 |
105 136
|
syl |
|- ( ph -> Z e. dom card ) |
138 |
|
carden2 |
|- ( ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. dom card /\ Z e. dom card ) -> ( ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) = ( card ` Z ) <-> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
139 |
135 137 138
|
syl2anc |
|- ( ph -> ( ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) = ( card ` Z ) <-> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
140 |
133 139
|
mpbid |
|- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) |
141 |
|
dfpss2 |
|- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z <-> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C_ Z /\ -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z ) ) |
142 |
141
|
baib |
|- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C_ Z -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z <-> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z ) ) |
143 |
118 142
|
syl |
|- ( ph -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z <-> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z ) ) |
144 |
|
php3 |
|- ( ( Z e. Fin /\ ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z ) -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~< Z ) |
145 |
|
sdomnen |
|- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~< Z -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) |
146 |
144 145
|
syl |
|- ( ( Z e. Fin /\ ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z ) -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) |
147 |
146
|
ex |
|- ( Z e. Fin -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
148 |
105 147
|
syl |
|- ( ph -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
149 |
143 148
|
sylbird |
|- ( ph -> ( -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
150 |
140 149
|
mt4d |
|- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z ) |
151 |
109 150
|
eleqtrrd |
|- ( ph -> ( H ` ( card ` Z ) ) e. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) |
152 |
|
fvex |
|- ( H ` ( card ` Z ) ) e. _V |
153 |
152
|
eliniseg |
|- ( ( H ` ( card ` Z ) ) e. _V -> ( ( H ` ( card ` Z ) ) e. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) <-> ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) ) |
154 |
152 153
|
ax-mp |
|- ( ( H ` ( card ` Z ) ) e. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) <-> ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) |
155 |
151 154
|
sylib |
|- ( ph -> ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) |
156 |
25
|
simprd |
|- ( ph -> ( ( W ` Z ) We Z /\ A. b e. Z [. ( `' ( W ` Z ) " { b } ) / v ]. ( v F ( ( W ` Z ) i^i ( v X. v ) ) ) = b ) ) |
157 |
156
|
simpld |
|- ( ph -> ( W ` Z ) We Z ) |
158 |
|
weso |
|- ( ( W ` Z ) We Z -> ( W ` Z ) Or Z ) |
159 |
157 158
|
syl |
|- ( ph -> ( W ` Z ) Or Z ) |
160 |
|
sonr |
|- ( ( ( W ` Z ) Or Z /\ ( H ` ( card ` Z ) ) e. Z ) -> -. ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) |
161 |
159 109 160
|
syl2anc |
|- ( ph -> -. ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) |
162 |
155 161
|
pm2.65i |
|- -. ph |