Step |
Hyp |
Ref |
Expression |
1 |
|
pwfseqlem4.g |
⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
2 |
|
pwfseqlem4.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
3 |
|
pwfseqlem4.h |
⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) |
4 |
|
pwfseqlem4.ps |
⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) |
5 |
|
pwfseqlem4.k |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) |
6 |
|
pwfseqlem4.d |
⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
7 |
|
pwfseqlem4.f |
⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
8 |
|
pwfseqlem4.w |
⊢ 𝑊 = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑏 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) } |
9 |
|
pwfseqlem4.z |
⊢ 𝑍 = ∪ dom 𝑊 |
10 |
|
eqid |
⊢ 𝑍 = 𝑍 |
11 |
|
eqid |
⊢ ( 𝑊 ‘ 𝑍 ) = ( 𝑊 ‘ 𝑍 ) |
12 |
10 11
|
pm3.2i |
⊢ ( 𝑍 = 𝑍 ∧ ( 𝑊 ‘ 𝑍 ) = ( 𝑊 ‘ 𝑍 ) ) |
13 |
|
omex |
⊢ ω ∈ V |
14 |
|
ovex |
⊢ ( 𝐴 ↑m 𝑛 ) ∈ V |
15 |
13 14
|
iunex |
⊢ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ V |
16 |
|
f1dmex |
⊢ ( ( 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ V ) → 𝒫 𝐴 ∈ V ) |
17 |
1 15 16
|
sylancl |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ V ) |
18 |
|
pwexb |
⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) |
19 |
17 18
|
sylibr |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
20 |
1 2 3 4 5 6 7
|
pwfseqlem4a |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |
21 |
8 19 20 9
|
fpwwe2 |
⊢ ( 𝜑 → ( ( 𝑍 𝑊 ( 𝑊 ‘ 𝑍 ) ∧ ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 ) ↔ ( 𝑍 = 𝑍 ∧ ( 𝑊 ‘ 𝑍 ) = ( 𝑊 ‘ 𝑍 ) ) ) ) |
22 |
12 21
|
mpbiri |
⊢ ( 𝜑 → ( 𝑍 𝑊 ( 𝑊 ‘ 𝑍 ) ∧ ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 𝑍 𝑊 ( 𝑊 ‘ 𝑍 ) ) |
24 |
8 19
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑍 𝑊 ( 𝑊 ‘ 𝑍 ) ↔ ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ∧ ( ( 𝑊 ‘ 𝑍 ) We 𝑍 ∧ ∀ 𝑏 ∈ 𝑍 [ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) ) ) |
25 |
23 24
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ∧ ( ( 𝑊 ‘ 𝑍 ) We 𝑍 ∧ ∀ 𝑏 ∈ 𝑍 [ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) ) |
26 |
|
id |
⊢ ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
27 |
26
|
3expa |
⊢ ( ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
28 |
27
|
adantrr |
⊢ ( ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ∧ ( ( 𝑊 ‘ 𝑍 ) We 𝑍 ∧ ∀ 𝑏 ∈ 𝑍 [ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
29 |
25 28
|
syl |
⊢ ( 𝜑 → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
30 |
22
|
simprd |
⊢ ( 𝜑 → ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 ) |
31 |
25
|
simpld |
⊢ ( 𝜑 → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ) |
32 |
31
|
simpld |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
33 |
19 32
|
ssexd |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
34 |
|
fvexd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝑍 ) ∈ V ) |
35 |
|
simpl |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → 𝑎 = 𝑍 ) |
36 |
35
|
sseq1d |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑎 ⊆ 𝐴 ↔ 𝑍 ⊆ 𝐴 ) ) |
37 |
|
simpr |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → 𝑠 = ( 𝑊 ‘ 𝑍 ) ) |
38 |
35
|
sqxpeqd |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑎 × 𝑎 ) = ( 𝑍 × 𝑍 ) ) |
39 |
37 38
|
sseq12d |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑠 ⊆ ( 𝑎 × 𝑎 ) ↔ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ) |
40 |
37 35
|
weeq12d |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑠 We 𝑎 ↔ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
41 |
36 39 40
|
3anbi123d |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ↔ ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) ) |
42 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑎 𝐹 𝑠 ) = ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ) |
43 |
42 35
|
eleq12d |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 ↔ ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 ) ) |
44 |
35
|
breq1d |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑎 ≺ ω ↔ 𝑍 ≺ ω ) ) |
45 |
43 44
|
imbi12d |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 → 𝑎 ≺ ω ) ↔ ( ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 → 𝑍 ≺ ω ) ) ) |
46 |
41 45
|
imbi12d |
⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) → ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 → 𝑎 ≺ ω ) ) ↔ ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) → ( ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 → 𝑍 ≺ ω ) ) ) ) |
47 |
|
omelon |
⊢ ω ∈ On |
48 |
|
onenon |
⊢ ( ω ∈ On → ω ∈ dom card ) |
49 |
47 48
|
ax-mp |
⊢ ω ∈ dom card |
50 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → 𝑠 We 𝑎 ) |
51 |
50
|
19.8ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ∃ 𝑠 𝑠 We 𝑎 ) |
52 |
|
ween |
⊢ ( 𝑎 ∈ dom card ↔ ∃ 𝑠 𝑠 We 𝑎 ) |
53 |
51 52
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → 𝑎 ∈ dom card ) |
54 |
|
domtri2 |
⊢ ( ( ω ∈ dom card ∧ 𝑎 ∈ dom card ) → ( ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω ) ) |
55 |
49 53 54
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω ) ) |
56 |
|
nfv |
⊢ Ⅎ 𝑟 ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) |
57 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑎 |
58 |
|
nfmpo2 |
⊢ Ⅎ 𝑟 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
59 |
7 58
|
nfcxfr |
⊢ Ⅎ 𝑟 𝐹 |
60 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑠 |
61 |
57 59 60
|
nfov |
⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) |
62 |
61
|
nfel1 |
⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) |
63 |
56 62
|
nfim |
⊢ Ⅎ 𝑟 ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
64 |
|
sseq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 ⊆ ( 𝑎 × 𝑎 ) ↔ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) |
65 |
|
weeq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 We 𝑎 ↔ 𝑠 We 𝑎 ) ) |
66 |
64 65
|
3anbi23d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) ) |
67 |
66
|
anbi1d |
⊢ ( 𝑟 = 𝑠 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
68 |
67
|
anbi2d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ↔ ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) ) |
69 |
|
oveq2 |
⊢ ( 𝑟 = 𝑠 → ( 𝑎 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑠 ) ) |
70 |
69
|
eleq1d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ↔ ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) |
71 |
68 70
|
imbi12d |
⊢ ( 𝑟 = 𝑠 → ( ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) ) |
72 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) |
73 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
74 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
75 |
7 74
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
76 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑟 |
77 |
73 75 76
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) |
78 |
77
|
nfel1 |
⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) |
79 |
72 78
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
80 |
|
sseq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴 ) ) |
81 |
|
xpeq12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑥 = 𝑎 ) → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) |
82 |
81
|
anidms |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) |
83 |
82
|
sseq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ) ) |
84 |
|
weeq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝑎 ) ) |
85 |
80 83 84
|
3anbi123d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ) ) |
86 |
|
breq2 |
⊢ ( 𝑥 = 𝑎 → ( ω ≼ 𝑥 ↔ ω ≼ 𝑎 ) ) |
87 |
85 86
|
anbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
88 |
4 87
|
bitrid |
⊢ ( 𝑥 = 𝑎 → ( 𝜓 ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
89 |
88
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) ) |
90 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑟 ) ) |
91 |
|
difeq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑎 ) ) |
92 |
90 91
|
eleq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ↔ ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) |
93 |
89 92
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) ) |
94 |
1 2 3 4 5 6 7
|
pwfseqlem3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
95 |
79 93 94
|
chvarfv |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
96 |
63 71 95
|
chvarfv |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
97 |
96
|
eldifbd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ¬ ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 ) |
98 |
97
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ω ≼ 𝑎 → ¬ ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 ) ) |
99 |
55 98
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ¬ 𝑎 ≺ ω → ¬ ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 ) ) |
100 |
99
|
con4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 → 𝑎 ≺ ω ) ) |
101 |
100
|
ex |
⊢ ( 𝜑 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) → ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 → 𝑎 ≺ ω ) ) ) |
102 |
33 34 46 101
|
vtocl2d |
⊢ ( 𝜑 → ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) → ( ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 → 𝑍 ≺ ω ) ) ) |
103 |
29 30 102
|
mp2d |
⊢ ( 𝜑 → 𝑍 ≺ ω ) |
104 |
|
isfinite |
⊢ ( 𝑍 ∈ Fin ↔ 𝑍 ≺ ω ) |
105 |
103 104
|
sylibr |
⊢ ( 𝜑 → 𝑍 ∈ Fin ) |
106 |
|
fvex |
⊢ ( 𝑊 ‘ 𝑍 ) ∈ V |
107 |
1 2 3 4 5 6 7
|
pwfseqlem2 |
⊢ ( ( 𝑍 ∈ Fin ∧ ( 𝑊 ‘ 𝑍 ) ∈ V ) → ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
108 |
105 106 107
|
sylancl |
⊢ ( 𝜑 → ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
109 |
108 30
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ 𝑍 ) |
110 |
8 19 23
|
fpwwe2lem3 |
⊢ ( ( 𝜑 ∧ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ 𝑍 ) → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) = ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
111 |
109 110
|
mpdan |
⊢ ( 𝜑 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) = ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
112 |
|
cnvimass |
⊢ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊆ dom ( 𝑊 ‘ 𝑍 ) |
113 |
31
|
simprd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) |
114 |
|
dmss |
⊢ ( ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) → dom ( 𝑊 ‘ 𝑍 ) ⊆ dom ( 𝑍 × 𝑍 ) ) |
115 |
113 114
|
syl |
⊢ ( 𝜑 → dom ( 𝑊 ‘ 𝑍 ) ⊆ dom ( 𝑍 × 𝑍 ) ) |
116 |
|
dmxpss |
⊢ dom ( 𝑍 × 𝑍 ) ⊆ 𝑍 |
117 |
115 116
|
sstrdi |
⊢ ( 𝜑 → dom ( 𝑊 ‘ 𝑍 ) ⊆ 𝑍 ) |
118 |
112 117
|
sstrid |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊆ 𝑍 ) |
119 |
105 118
|
ssfid |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ Fin ) |
120 |
106
|
inex1 |
⊢ ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ∈ V |
121 |
1 2 3 4 5 6 7
|
pwfseqlem2 |
⊢ ( ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ Fin ∧ ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ∈ V ) → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
122 |
119 120 121
|
sylancl |
⊢ ( 𝜑 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
123 |
111 122
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐻 ‘ ( card ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
124 |
|
f1of1 |
⊢ ( 𝐻 : ω –1-1-onto→ 𝑋 → 𝐻 : ω –1-1→ 𝑋 ) |
125 |
3 124
|
syl |
⊢ ( 𝜑 → 𝐻 : ω –1-1→ 𝑋 ) |
126 |
|
ficardom |
⊢ ( 𝑍 ∈ Fin → ( card ‘ 𝑍 ) ∈ ω ) |
127 |
105 126
|
syl |
⊢ ( 𝜑 → ( card ‘ 𝑍 ) ∈ ω ) |
128 |
|
ficardom |
⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ Fin → ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ∈ ω ) |
129 |
119 128
|
syl |
⊢ ( 𝜑 → ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ∈ ω ) |
130 |
|
f1fveq |
⊢ ( ( 𝐻 : ω –1-1→ 𝑋 ∧ ( ( card ‘ 𝑍 ) ∈ ω ∧ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ∈ ω ) ) → ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ↔ ( card ‘ 𝑍 ) = ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
131 |
125 127 129 130
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ↔ ( card ‘ 𝑍 ) = ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
132 |
123 131
|
mpbid |
⊢ ( 𝜑 → ( card ‘ 𝑍 ) = ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) |
133 |
132
|
eqcomd |
⊢ ( 𝜑 → ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) = ( card ‘ 𝑍 ) ) |
134 |
|
finnum |
⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ Fin → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ dom card ) |
135 |
119 134
|
syl |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ dom card ) |
136 |
|
finnum |
⊢ ( 𝑍 ∈ Fin → 𝑍 ∈ dom card ) |
137 |
105 136
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ dom card ) |
138 |
|
carden2 |
⊢ ( ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ dom card ∧ 𝑍 ∈ dom card ) → ( ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) = ( card ‘ 𝑍 ) ↔ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
139 |
135 137 138
|
syl2anc |
⊢ ( 𝜑 → ( ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) = ( card ‘ 𝑍 ) ↔ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
140 |
133 139
|
mpbid |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) |
141 |
|
dfpss2 |
⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ↔ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊆ 𝑍 ∧ ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 ) ) |
142 |
141
|
baib |
⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊆ 𝑍 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ↔ ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 ) ) |
143 |
118 142
|
syl |
⊢ ( 𝜑 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ↔ ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 ) ) |
144 |
|
php3 |
⊢ ( ( 𝑍 ∈ Fin ∧ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ) → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≺ 𝑍 ) |
145 |
|
sdomnen |
⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≺ 𝑍 → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) |
146 |
144 145
|
syl |
⊢ ( ( 𝑍 ∈ Fin ∧ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ) → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) |
147 |
146
|
ex |
⊢ ( 𝑍 ∈ Fin → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
148 |
105 147
|
syl |
⊢ ( 𝜑 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
149 |
143 148
|
sylbird |
⊢ ( 𝜑 → ( ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
150 |
140 149
|
mt4d |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 ) |
151 |
109 150
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) |
152 |
|
fvex |
⊢ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ V |
153 |
152
|
eliniseg |
⊢ ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ V → ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ↔ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) ) |
154 |
152 153
|
ax-mp |
⊢ ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ↔ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
155 |
151 154
|
sylib |
⊢ ( 𝜑 → ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
156 |
25
|
simprd |
⊢ ( 𝜑 → ( ( 𝑊 ‘ 𝑍 ) We 𝑍 ∧ ∀ 𝑏 ∈ 𝑍 [ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) |
157 |
156
|
simpld |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝑍 ) We 𝑍 ) |
158 |
|
weso |
⊢ ( ( 𝑊 ‘ 𝑍 ) We 𝑍 → ( 𝑊 ‘ 𝑍 ) Or 𝑍 ) |
159 |
157 158
|
syl |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝑍 ) Or 𝑍 ) |
160 |
|
sonr |
⊢ ( ( ( 𝑊 ‘ 𝑍 ) Or 𝑍 ∧ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ 𝑍 ) → ¬ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
161 |
159 109 160
|
syl2anc |
⊢ ( 𝜑 → ¬ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
162 |
155 161
|
pm2.65i |
⊢ ¬ 𝜑 |