Metamath Proof Explorer


Theorem pwfseqlem5

Description: Lemma for pwfseq . Although in some ways pwfseqlem4 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection K from the set of finite sequences on an infinite set x to x . Now this alone would not be difficult to prove; this is mostly the claim of fseqen . However, what is needed for the proof is acanonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen . The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms ( cnfcom3c ), which can be used to construct a pairing function explicitly using properties of the ordinal exponential ( infxpenc ). (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem5.g ( 𝜑𝐺 : 𝒫 𝐴1-1 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
pwfseqlem5.x ( 𝜑𝑋𝐴 )
pwfseqlem5.h ( 𝜑𝐻 : ω –1-1-onto𝑋 )
pwfseqlem5.ps ( 𝜓 ↔ ( ( 𝑡𝐴𝑟 ⊆ ( 𝑡 × 𝑡 ) ∧ 𝑟 We 𝑡 ) ∧ ω ≼ 𝑡 ) )
pwfseqlem5.n ( 𝜑 → ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑁𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ) )
pwfseqlem5.o 𝑂 = OrdIso ( 𝑟 , 𝑡 )
pwfseqlem5.t 𝑇 = ( 𝑢 ∈ dom 𝑂 , 𝑣 ∈ dom 𝑂 ↦ ⟨ ( 𝑂𝑢 ) , ( 𝑂𝑣 ) ⟩ )
pwfseqlem5.p 𝑃 = ( ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) ∘ 𝑇 )
pwfseqlem5.s 𝑆 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝑡m suc 𝑘 ) ↦ ( ( 𝑓 ‘ ( 𝑥𝑘 ) ) 𝑃 ( 𝑥𝑘 ) ) ) ) , { ⟨ ∅ , ( 𝑂 ‘ ∅ ) ⟩ } )
pwfseqlem5.q 𝑄 = ( 𝑦 𝑛 ∈ ω ( 𝑡m 𝑛 ) ↦ ⟨ dom 𝑦 , ( ( 𝑆 ‘ dom 𝑦 ) ‘ 𝑦 ) ⟩ )
pwfseqlem5.i 𝐼 = ( 𝑥 ∈ ω , 𝑦𝑡 ↦ ⟨ ( 𝑂𝑥 ) , 𝑦 ⟩ )
pwfseqlem5.k 𝐾 = ( ( 𝑃𝐼 ) ∘ 𝑄 )
Assertion pwfseqlem5 ¬ 𝜑

Proof

Step Hyp Ref Expression
1 pwfseqlem5.g ( 𝜑𝐺 : 𝒫 𝐴1-1 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
2 pwfseqlem5.x ( 𝜑𝑋𝐴 )
3 pwfseqlem5.h ( 𝜑𝐻 : ω –1-1-onto𝑋 )
4 pwfseqlem5.ps ( 𝜓 ↔ ( ( 𝑡𝐴𝑟 ⊆ ( 𝑡 × 𝑡 ) ∧ 𝑟 We 𝑡 ) ∧ ω ≼ 𝑡 ) )
5 pwfseqlem5.n ( 𝜑 → ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑁𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ) )
6 pwfseqlem5.o 𝑂 = OrdIso ( 𝑟 , 𝑡 )
7 pwfseqlem5.t 𝑇 = ( 𝑢 ∈ dom 𝑂 , 𝑣 ∈ dom 𝑂 ↦ ⟨ ( 𝑂𝑢 ) , ( 𝑂𝑣 ) ⟩ )
8 pwfseqlem5.p 𝑃 = ( ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) ∘ 𝑇 )
9 pwfseqlem5.s 𝑆 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝑡m suc 𝑘 ) ↦ ( ( 𝑓 ‘ ( 𝑥𝑘 ) ) 𝑃 ( 𝑥𝑘 ) ) ) ) , { ⟨ ∅ , ( 𝑂 ‘ ∅ ) ⟩ } )
10 pwfseqlem5.q 𝑄 = ( 𝑦 𝑛 ∈ ω ( 𝑡m 𝑛 ) ↦ ⟨ dom 𝑦 , ( ( 𝑆 ‘ dom 𝑦 ) ‘ 𝑦 ) ⟩ )
11 pwfseqlem5.i 𝐼 = ( 𝑥 ∈ ω , 𝑦𝑡 ↦ ⟨ ( 𝑂𝑥 ) , 𝑦 ⟩ )
12 pwfseqlem5.k 𝐾 = ( ( 𝑃𝐼 ) ∘ 𝑄 )
13 vex 𝑡 ∈ V
14 simprl3 ( ( 𝜑 ∧ ( ( 𝑡𝐴𝑟 ⊆ ( 𝑡 × 𝑡 ) ∧ 𝑟 We 𝑡 ) ∧ ω ≼ 𝑡 ) ) → 𝑟 We 𝑡 )
15 4 14 sylan2b ( ( 𝜑𝜓 ) → 𝑟 We 𝑡 )
16 6 oiiso ( ( 𝑡 ∈ V ∧ 𝑟 We 𝑡 ) → 𝑂 Isom E , 𝑟 ( dom 𝑂 , 𝑡 ) )
17 13 15 16 sylancr ( ( 𝜑𝜓 ) → 𝑂 Isom E , 𝑟 ( dom 𝑂 , 𝑡 ) )
18 isof1o ( 𝑂 Isom E , 𝑟 ( dom 𝑂 , 𝑡 ) → 𝑂 : dom 𝑂1-1-onto𝑡 )
19 17 18 syl ( ( 𝜑𝜓 ) → 𝑂 : dom 𝑂1-1-onto𝑡 )
20 cardom ( card ‘ ω ) = ω
21 simprr ( ( 𝜑 ∧ ( ( 𝑡𝐴𝑟 ⊆ ( 𝑡 × 𝑡 ) ∧ 𝑟 We 𝑡 ) ∧ ω ≼ 𝑡 ) ) → ω ≼ 𝑡 )
22 4 21 sylan2b ( ( 𝜑𝜓 ) → ω ≼ 𝑡 )
23 6 oien ( ( 𝑡 ∈ V ∧ 𝑟 We 𝑡 ) → dom 𝑂𝑡 )
24 13 15 23 sylancr ( ( 𝜑𝜓 ) → dom 𝑂𝑡 )
25 24 ensymd ( ( 𝜑𝜓 ) → 𝑡 ≈ dom 𝑂 )
26 domentr ( ( ω ≼ 𝑡𝑡 ≈ dom 𝑂 ) → ω ≼ dom 𝑂 )
27 22 25 26 syl2anc ( ( 𝜑𝜓 ) → ω ≼ dom 𝑂 )
28 omelon ω ∈ On
29 onenon ( ω ∈ On → ω ∈ dom card )
30 28 29 ax-mp ω ∈ dom card
31 6 oion ( 𝑡 ∈ V → dom 𝑂 ∈ On )
32 31 elv dom 𝑂 ∈ On
33 onenon ( dom 𝑂 ∈ On → dom 𝑂 ∈ dom card )
34 32 33 mp1i ( ( 𝜑𝜓 ) → dom 𝑂 ∈ dom card )
35 carddom2 ( ( ω ∈ dom card ∧ dom 𝑂 ∈ dom card ) → ( ( card ‘ ω ) ⊆ ( card ‘ dom 𝑂 ) ↔ ω ≼ dom 𝑂 ) )
36 30 34 35 sylancr ( ( 𝜑𝜓 ) → ( ( card ‘ ω ) ⊆ ( card ‘ dom 𝑂 ) ↔ ω ≼ dom 𝑂 ) )
37 27 36 mpbird ( ( 𝜑𝜓 ) → ( card ‘ ω ) ⊆ ( card ‘ dom 𝑂 ) )
38 20 37 eqsstrrid ( ( 𝜑𝜓 ) → ω ⊆ ( card ‘ dom 𝑂 ) )
39 cardonle ( dom 𝑂 ∈ On → ( card ‘ dom 𝑂 ) ⊆ dom 𝑂 )
40 32 39 mp1i ( ( 𝜑𝜓 ) → ( card ‘ dom 𝑂 ) ⊆ dom 𝑂 )
41 38 40 sstrd ( ( 𝜑𝜓 ) → ω ⊆ dom 𝑂 )
42 sseq2 ( 𝑏 = dom 𝑂 → ( ω ⊆ 𝑏 ↔ ω ⊆ dom 𝑂 ) )
43 fveq2 ( 𝑏 = dom 𝑂 → ( 𝑁𝑏 ) = ( 𝑁 ‘ dom 𝑂 ) )
44 f1oeq1 ( ( 𝑁𝑏 ) = ( 𝑁 ‘ dom 𝑂 ) → ( ( 𝑁𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ↔ ( 𝑁 ‘ dom 𝑂 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ) )
45 43 44 syl ( 𝑏 = dom 𝑂 → ( ( 𝑁𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ↔ ( 𝑁 ‘ dom 𝑂 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ) )
46 xpeq12 ( ( 𝑏 = dom 𝑂𝑏 = dom 𝑂 ) → ( 𝑏 × 𝑏 ) = ( dom 𝑂 × dom 𝑂 ) )
47 46 anidms ( 𝑏 = dom 𝑂 → ( 𝑏 × 𝑏 ) = ( dom 𝑂 × dom 𝑂 ) )
48 47 f1oeq2d ( 𝑏 = dom 𝑂 → ( ( 𝑁 ‘ dom 𝑂 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ↔ ( 𝑁 ‘ dom 𝑂 ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto𝑏 ) )
49 f1oeq3 ( 𝑏 = dom 𝑂 → ( ( 𝑁 ‘ dom 𝑂 ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto𝑏 ↔ ( 𝑁 ‘ dom 𝑂 ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ dom 𝑂 ) )
50 45 48 49 3bitrd ( 𝑏 = dom 𝑂 → ( ( 𝑁𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ↔ ( 𝑁 ‘ dom 𝑂 ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ dom 𝑂 ) )
51 42 50 imbi12d ( 𝑏 = dom 𝑂 → ( ( ω ⊆ 𝑏 → ( 𝑁𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ) ↔ ( ω ⊆ dom 𝑂 → ( 𝑁 ‘ dom 𝑂 ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ dom 𝑂 ) ) )
52 5 adantr ( ( 𝜑𝜓 ) → ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑁𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ) )
53 32 a1i ( ( 𝜑𝜓 ) → dom 𝑂 ∈ On )
54 1 adantr ( ( 𝜑𝜓 ) → 𝐺 : 𝒫 𝐴1-1 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
55 omex ω ∈ V
56 ovex ( 𝐴m 𝑛 ) ∈ V
57 55 56 iunex 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∈ V
58 f1dmex ( ( 𝐺 : 𝒫 𝐴1-1 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∧ 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∈ V ) → 𝒫 𝐴 ∈ V )
59 54 57 58 sylancl ( ( 𝜑𝜓 ) → 𝒫 𝐴 ∈ V )
60 pwexb ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V )
61 59 60 sylibr ( ( 𝜑𝜓 ) → 𝐴 ∈ V )
62 simprl1 ( ( 𝜑 ∧ ( ( 𝑡𝐴𝑟 ⊆ ( 𝑡 × 𝑡 ) ∧ 𝑟 We 𝑡 ) ∧ ω ≼ 𝑡 ) ) → 𝑡𝐴 )
63 4 62 sylan2b ( ( 𝜑𝜓 ) → 𝑡𝐴 )
64 ssdomg ( 𝐴 ∈ V → ( 𝑡𝐴𝑡𝐴 ) )
65 61 63 64 sylc ( ( 𝜑𝜓 ) → 𝑡𝐴 )
66 canth2g ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 )
67 sdomdom ( 𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴 )
68 61 66 67 3syl ( ( 𝜑𝜓 ) → 𝐴 ≼ 𝒫 𝐴 )
69 domtr ( ( 𝑡𝐴𝐴 ≼ 𝒫 𝐴 ) → 𝑡 ≼ 𝒫 𝐴 )
70 65 68 69 syl2anc ( ( 𝜑𝜓 ) → 𝑡 ≼ 𝒫 𝐴 )
71 endomtr ( ( dom 𝑂𝑡𝑡 ≼ 𝒫 𝐴 ) → dom 𝑂 ≼ 𝒫 𝐴 )
72 24 70 71 syl2anc ( ( 𝜑𝜓 ) → dom 𝑂 ≼ 𝒫 𝐴 )
73 elharval ( dom 𝑂 ∈ ( har ‘ 𝒫 𝐴 ) ↔ ( dom 𝑂 ∈ On ∧ dom 𝑂 ≼ 𝒫 𝐴 ) )
74 53 72 73 sylanbrc ( ( 𝜑𝜓 ) → dom 𝑂 ∈ ( har ‘ 𝒫 𝐴 ) )
75 51 52 74 rspcdva ( ( 𝜑𝜓 ) → ( ω ⊆ dom 𝑂 → ( 𝑁 ‘ dom 𝑂 ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ dom 𝑂 ) )
76 41 75 mpd ( ( 𝜑𝜓 ) → ( 𝑁 ‘ dom 𝑂 ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ dom 𝑂 )
77 f1oco ( ( 𝑂 : dom 𝑂1-1-onto𝑡 ∧ ( 𝑁 ‘ dom 𝑂 ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ dom 𝑂 ) → ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto𝑡 )
78 19 76 77 syl2anc ( ( 𝜑𝜓 ) → ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto𝑡 )
79 f1of ( 𝑂 : dom 𝑂1-1-onto𝑡𝑂 : dom 𝑂𝑡 )
80 19 79 syl ( ( 𝜑𝜓 ) → 𝑂 : dom 𝑂𝑡 )
81 80 feqmptd ( ( 𝜑𝜓 ) → 𝑂 = ( 𝑢 ∈ dom 𝑂 ↦ ( 𝑂𝑢 ) ) )
82 f1oeq1 ( 𝑂 = ( 𝑢 ∈ dom 𝑂 ↦ ( 𝑂𝑢 ) ) → ( 𝑂 : dom 𝑂1-1-onto𝑡 ↔ ( 𝑢 ∈ dom 𝑂 ↦ ( 𝑂𝑢 ) ) : dom 𝑂1-1-onto𝑡 ) )
83 81 82 syl ( ( 𝜑𝜓 ) → ( 𝑂 : dom 𝑂1-1-onto𝑡 ↔ ( 𝑢 ∈ dom 𝑂 ↦ ( 𝑂𝑢 ) ) : dom 𝑂1-1-onto𝑡 ) )
84 19 83 mpbid ( ( 𝜑𝜓 ) → ( 𝑢 ∈ dom 𝑂 ↦ ( 𝑂𝑢 ) ) : dom 𝑂1-1-onto𝑡 )
85 80 feqmptd ( ( 𝜑𝜓 ) → 𝑂 = ( 𝑣 ∈ dom 𝑂 ↦ ( 𝑂𝑣 ) ) )
86 f1oeq1 ( 𝑂 = ( 𝑣 ∈ dom 𝑂 ↦ ( 𝑂𝑣 ) ) → ( 𝑂 : dom 𝑂1-1-onto𝑡 ↔ ( 𝑣 ∈ dom 𝑂 ↦ ( 𝑂𝑣 ) ) : dom 𝑂1-1-onto𝑡 ) )
87 85 86 syl ( ( 𝜑𝜓 ) → ( 𝑂 : dom 𝑂1-1-onto𝑡 ↔ ( 𝑣 ∈ dom 𝑂 ↦ ( 𝑂𝑣 ) ) : dom 𝑂1-1-onto𝑡 ) )
88 19 87 mpbid ( ( 𝜑𝜓 ) → ( 𝑣 ∈ dom 𝑂 ↦ ( 𝑂𝑣 ) ) : dom 𝑂1-1-onto𝑡 )
89 84 88 xpf1o ( ( 𝜑𝜓 ) → ( 𝑢 ∈ dom 𝑂 , 𝑣 ∈ dom 𝑂 ↦ ⟨ ( 𝑂𝑢 ) , ( 𝑂𝑣 ) ⟩ ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ ( 𝑡 × 𝑡 ) )
90 f1oeq1 ( 𝑇 = ( 𝑢 ∈ dom 𝑂 , 𝑣 ∈ dom 𝑂 ↦ ⟨ ( 𝑂𝑢 ) , ( 𝑂𝑣 ) ⟩ ) → ( 𝑇 : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ ( 𝑡 × 𝑡 ) ↔ ( 𝑢 ∈ dom 𝑂 , 𝑣 ∈ dom 𝑂 ↦ ⟨ ( 𝑂𝑢 ) , ( 𝑂𝑣 ) ⟩ ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ ( 𝑡 × 𝑡 ) ) )
91 7 90 ax-mp ( 𝑇 : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ ( 𝑡 × 𝑡 ) ↔ ( 𝑢 ∈ dom 𝑂 , 𝑣 ∈ dom 𝑂 ↦ ⟨ ( 𝑂𝑢 ) , ( 𝑂𝑣 ) ⟩ ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ ( 𝑡 × 𝑡 ) )
92 89 91 sylibr ( ( 𝜑𝜓 ) → 𝑇 : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ ( 𝑡 × 𝑡 ) )
93 f1ocnv ( 𝑇 : ( dom 𝑂 × dom 𝑂 ) –1-1-onto→ ( 𝑡 × 𝑡 ) → 𝑇 : ( 𝑡 × 𝑡 ) –1-1-onto→ ( dom 𝑂 × dom 𝑂 ) )
94 92 93 syl ( ( 𝜑𝜓 ) → 𝑇 : ( 𝑡 × 𝑡 ) –1-1-onto→ ( dom 𝑂 × dom 𝑂 ) )
95 f1oco ( ( ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) : ( dom 𝑂 × dom 𝑂 ) –1-1-onto𝑡 𝑇 : ( 𝑡 × 𝑡 ) –1-1-onto→ ( dom 𝑂 × dom 𝑂 ) ) → ( ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) ∘ 𝑇 ) : ( 𝑡 × 𝑡 ) –1-1-onto𝑡 )
96 78 94 95 syl2anc ( ( 𝜑𝜓 ) → ( ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) ∘ 𝑇 ) : ( 𝑡 × 𝑡 ) –1-1-onto𝑡 )
97 f1oeq1 ( 𝑃 = ( ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) ∘ 𝑇 ) → ( 𝑃 : ( 𝑡 × 𝑡 ) –1-1-onto𝑡 ↔ ( ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) ∘ 𝑇 ) : ( 𝑡 × 𝑡 ) –1-1-onto𝑡 ) )
98 8 97 ax-mp ( 𝑃 : ( 𝑡 × 𝑡 ) –1-1-onto𝑡 ↔ ( ( 𝑂 ∘ ( 𝑁 ‘ dom 𝑂 ) ) ∘ 𝑇 ) : ( 𝑡 × 𝑡 ) –1-1-onto𝑡 )
99 96 98 sylibr ( ( 𝜑𝜓 ) → 𝑃 : ( 𝑡 × 𝑡 ) –1-1-onto𝑡 )
100 f1of1 ( 𝑃 : ( 𝑡 × 𝑡 ) –1-1-onto𝑡𝑃 : ( 𝑡 × 𝑡 ) –1-1𝑡 )
101 99 100 syl ( ( 𝜑𝜓 ) → 𝑃 : ( 𝑡 × 𝑡 ) –1-1𝑡 )
102 f1of1 ( 𝑂 : dom 𝑂1-1-onto𝑡𝑂 : dom 𝑂1-1𝑡 )
103 19 102 syl ( ( 𝜑𝜓 ) → 𝑂 : dom 𝑂1-1𝑡 )
104 f1ssres ( ( 𝑂 : dom 𝑂1-1𝑡 ∧ ω ⊆ dom 𝑂 ) → ( 𝑂 ↾ ω ) : ω –1-1𝑡 )
105 103 41 104 syl2anc ( ( 𝜑𝜓 ) → ( 𝑂 ↾ ω ) : ω –1-1𝑡 )
106 f1f1orn ( ( 𝑂 ↾ ω ) : ω –1-1𝑡 → ( 𝑂 ↾ ω ) : ω –1-1-onto→ ran ( 𝑂 ↾ ω ) )
107 105 106 syl ( ( 𝜑𝜓 ) → ( 𝑂 ↾ ω ) : ω –1-1-onto→ ran ( 𝑂 ↾ ω ) )
108 80 41 feqresmpt ( ( 𝜑𝜓 ) → ( 𝑂 ↾ ω ) = ( 𝑥 ∈ ω ↦ ( 𝑂𝑥 ) ) )
109 f1oeq1 ( ( 𝑂 ↾ ω ) = ( 𝑥 ∈ ω ↦ ( 𝑂𝑥 ) ) → ( ( 𝑂 ↾ ω ) : ω –1-1-onto→ ran ( 𝑂 ↾ ω ) ↔ ( 𝑥 ∈ ω ↦ ( 𝑂𝑥 ) ) : ω –1-1-onto→ ran ( 𝑂 ↾ ω ) ) )
110 108 109 syl ( ( 𝜑𝜓 ) → ( ( 𝑂 ↾ ω ) : ω –1-1-onto→ ran ( 𝑂 ↾ ω ) ↔ ( 𝑥 ∈ ω ↦ ( 𝑂𝑥 ) ) : ω –1-1-onto→ ran ( 𝑂 ↾ ω ) ) )
111 107 110 mpbid ( ( 𝜑𝜓 ) → ( 𝑥 ∈ ω ↦ ( 𝑂𝑥 ) ) : ω –1-1-onto→ ran ( 𝑂 ↾ ω ) )
112 mptresid ( I ↾ 𝑡 ) = ( 𝑦𝑡𝑦 )
113 112 eqcomi ( 𝑦𝑡𝑦 ) = ( I ↾ 𝑡 )
114 f1oi ( I ↾ 𝑡 ) : 𝑡1-1-onto𝑡
115 f1oeq1 ( ( 𝑦𝑡𝑦 ) = ( I ↾ 𝑡 ) → ( ( 𝑦𝑡𝑦 ) : 𝑡1-1-onto𝑡 ↔ ( I ↾ 𝑡 ) : 𝑡1-1-onto𝑡 ) )
116 114 115 mpbiri ( ( 𝑦𝑡𝑦 ) = ( I ↾ 𝑡 ) → ( 𝑦𝑡𝑦 ) : 𝑡1-1-onto𝑡 )
117 113 116 mp1i ( ( 𝜑𝜓 ) → ( 𝑦𝑡𝑦 ) : 𝑡1-1-onto𝑡 )
118 111 117 xpf1o ( ( 𝜑𝜓 ) → ( 𝑥 ∈ ω , 𝑦𝑡 ↦ ⟨ ( 𝑂𝑥 ) , 𝑦 ⟩ ) : ( ω × 𝑡 ) –1-1-onto→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) )
119 f1oeq1 ( 𝐼 = ( 𝑥 ∈ ω , 𝑦𝑡 ↦ ⟨ ( 𝑂𝑥 ) , 𝑦 ⟩ ) → ( 𝐼 : ( ω × 𝑡 ) –1-1-onto→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) ↔ ( 𝑥 ∈ ω , 𝑦𝑡 ↦ ⟨ ( 𝑂𝑥 ) , 𝑦 ⟩ ) : ( ω × 𝑡 ) –1-1-onto→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) ) )
120 11 119 ax-mp ( 𝐼 : ( ω × 𝑡 ) –1-1-onto→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) ↔ ( 𝑥 ∈ ω , 𝑦𝑡 ↦ ⟨ ( 𝑂𝑥 ) , 𝑦 ⟩ ) : ( ω × 𝑡 ) –1-1-onto→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) )
121 118 120 sylibr ( ( 𝜑𝜓 ) → 𝐼 : ( ω × 𝑡 ) –1-1-onto→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) )
122 f1of1 ( 𝐼 : ( ω × 𝑡 ) –1-1-onto→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) → 𝐼 : ( ω × 𝑡 ) –1-1→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) )
123 121 122 syl ( ( 𝜑𝜓 ) → 𝐼 : ( ω × 𝑡 ) –1-1→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) )
124 f1f ( ( 𝑂 ↾ ω ) : ω –1-1𝑡 → ( 𝑂 ↾ ω ) : ω ⟶ 𝑡 )
125 frn ( ( 𝑂 ↾ ω ) : ω ⟶ 𝑡 → ran ( 𝑂 ↾ ω ) ⊆ 𝑡 )
126 xpss1 ( ran ( 𝑂 ↾ ω ) ⊆ 𝑡 → ( ran ( 𝑂 ↾ ω ) × 𝑡 ) ⊆ ( 𝑡 × 𝑡 ) )
127 105 124 125 126 4syl ( ( 𝜑𝜓 ) → ( ran ( 𝑂 ↾ ω ) × 𝑡 ) ⊆ ( 𝑡 × 𝑡 ) )
128 f1ss ( ( 𝐼 : ( ω × 𝑡 ) –1-1→ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) ∧ ( ran ( 𝑂 ↾ ω ) × 𝑡 ) ⊆ ( 𝑡 × 𝑡 ) ) → 𝐼 : ( ω × 𝑡 ) –1-1→ ( 𝑡 × 𝑡 ) )
129 123 127 128 syl2anc ( ( 𝜑𝜓 ) → 𝐼 : ( ω × 𝑡 ) –1-1→ ( 𝑡 × 𝑡 ) )
130 f1co ( ( 𝑃 : ( 𝑡 × 𝑡 ) –1-1𝑡𝐼 : ( ω × 𝑡 ) –1-1→ ( 𝑡 × 𝑡 ) ) → ( 𝑃𝐼 ) : ( ω × 𝑡 ) –1-1𝑡 )
131 101 129 130 syl2anc ( ( 𝜑𝜓 ) → ( 𝑃𝐼 ) : ( ω × 𝑡 ) –1-1𝑡 )
132 13 a1i ( ( 𝜑𝜓 ) → 𝑡 ∈ V )
133 peano1 ∅ ∈ ω
134 133 a1i ( ( 𝜑𝜓 ) → ∅ ∈ ω )
135 41 134 sseldd ( ( 𝜑𝜓 ) → ∅ ∈ dom 𝑂 )
136 80 135 ffvelrnd ( ( 𝜑𝜓 ) → ( 𝑂 ‘ ∅ ) ∈ 𝑡 )
137 132 136 99 9 10 fseqenlem2 ( ( 𝜑𝜓 ) → 𝑄 : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1→ ( ω × 𝑡 ) )
138 f1co ( ( ( 𝑃𝐼 ) : ( ω × 𝑡 ) –1-1𝑡𝑄 : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1→ ( ω × 𝑡 ) ) → ( ( 𝑃𝐼 ) ∘ 𝑄 ) : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1𝑡 )
139 131 137 138 syl2anc ( ( 𝜑𝜓 ) → ( ( 𝑃𝐼 ) ∘ 𝑄 ) : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1𝑡 )
140 f1eq1 ( 𝐾 = ( ( 𝑃𝐼 ) ∘ 𝑄 ) → ( 𝐾 : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1𝑡 ↔ ( ( 𝑃𝐼 ) ∘ 𝑄 ) : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1𝑡 ) )
141 12 140 ax-mp ( 𝐾 : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1𝑡 ↔ ( ( 𝑃𝐼 ) ∘ 𝑄 ) : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1𝑡 )
142 139 141 sylibr ( ( 𝜑𝜓 ) → 𝐾 : 𝑛 ∈ ω ( 𝑡m 𝑛 ) –1-1𝑡 )
143 eqid ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) = ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } )
144 eqid ( 𝑡 ∈ V , 𝑟 ∈ V ↦ if ( 𝑡 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑡 ) ) , ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ { 𝑧 ∈ ω ∣ ¬ ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ 𝑧 ) ∈ 𝑡 } ) ) ) = ( 𝑡 ∈ V , 𝑟 ∈ V ↦ if ( 𝑡 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑡 ) ) , ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ { 𝑧 ∈ ω ∣ ¬ ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ 𝑧 ) ∈ 𝑡 } ) ) )
145 eqid { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( ( 𝑐𝐴𝑑 ⊆ ( 𝑐 × 𝑐 ) ) ∧ ( 𝑑 We 𝑐 ∧ ∀ 𝑚𝑐 [ ( 𝑑 “ { 𝑚 } ) / 𝑗 ] ( 𝑗 ( 𝑡 ∈ V , 𝑟 ∈ V ↦ if ( 𝑡 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑡 ) ) , ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ { 𝑧 ∈ ω ∣ ¬ ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ 𝑧 ) ∈ 𝑡 } ) ) ) ( 𝑑 ∩ ( 𝑗 × 𝑗 ) ) ) = 𝑚 ) ) } = { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( ( 𝑐𝐴𝑑 ⊆ ( 𝑐 × 𝑐 ) ) ∧ ( 𝑑 We 𝑐 ∧ ∀ 𝑚𝑐 [ ( 𝑑 “ { 𝑚 } ) / 𝑗 ] ( 𝑗 ( 𝑡 ∈ V , 𝑟 ∈ V ↦ if ( 𝑡 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑡 ) ) , ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ { 𝑧 ∈ ω ∣ ¬ ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ 𝑧 ) ∈ 𝑡 } ) ) ) ( 𝑑 ∩ ( 𝑗 × 𝑗 ) ) ) = 𝑚 ) ) }
146 145 fpwwe2cbv { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( ( 𝑐𝐴𝑑 ⊆ ( 𝑐 × 𝑐 ) ) ∧ ( 𝑑 We 𝑐 ∧ ∀ 𝑚𝑐 [ ( 𝑑 “ { 𝑚 } ) / 𝑗 ] ( 𝑗 ( 𝑡 ∈ V , 𝑟 ∈ V ↦ if ( 𝑡 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑡 ) ) , ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ { 𝑧 ∈ ω ∣ ¬ ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ 𝑧 ) ∈ 𝑡 } ) ) ) ( 𝑑 ∩ ( 𝑗 × 𝑗 ) ) ) = 𝑚 ) ) } = { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑏𝑎 [ ( 𝑠 “ { 𝑏 } ) / 𝑤 ] ( 𝑤 ( 𝑡 ∈ V , 𝑟 ∈ V ↦ if ( 𝑡 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑡 ) ) , ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ { 𝑧 ∈ ω ∣ ¬ ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ 𝑧 ) ∈ 𝑡 } ) ) ) ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) = 𝑏 ) ) }
147 eqid dom { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( ( 𝑐𝐴𝑑 ⊆ ( 𝑐 × 𝑐 ) ) ∧ ( 𝑑 We 𝑐 ∧ ∀ 𝑚𝑐 [ ( 𝑑 “ { 𝑚 } ) / 𝑗 ] ( 𝑗 ( 𝑡 ∈ V , 𝑟 ∈ V ↦ if ( 𝑡 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑡 ) ) , ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ { 𝑧 ∈ ω ∣ ¬ ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ 𝑧 ) ∈ 𝑡 } ) ) ) ( 𝑑 ∩ ( 𝑗 × 𝑗 ) ) ) = 𝑚 ) ) } = dom { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( ( 𝑐𝐴𝑑 ⊆ ( 𝑐 × 𝑐 ) ) ∧ ( 𝑑 We 𝑐 ∧ ∀ 𝑚𝑐 [ ( 𝑑 “ { 𝑚 } ) / 𝑗 ] ( 𝑗 ( 𝑡 ∈ V , 𝑟 ∈ V ↦ if ( 𝑡 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑡 ) ) , ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ { 𝑧 ∈ ω ∣ ¬ ( ( 𝐺 ‘ { 𝑖𝑡 ∣ ( ( 𝐾𝑖 ) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ ( 𝐺 ‘ ( 𝐾𝑖 ) ) ) } ) ‘ 𝑧 ) ∈ 𝑡 } ) ) ) ( 𝑑 ∩ ( 𝑗 × 𝑗 ) ) ) = 𝑚 ) ) }
148 1 2 3 4 142 143 144 146 147 pwfseqlem4 ¬ 𝜑