Metamath Proof Explorer


Theorem pwfseqlem5

Description: Lemma for pwfseq . Although in some ways pwfseqlem4 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection K from the set of finite sequences on an infinite set x to x . Now this alone would not be difficult to prove; this is mostly the claim of fseqen . However, what is needed for the proof is acanonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen . The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms ( cnfcom3c ), which can be used to construct a pairing function explicitly using properties of the ordinal exponential ( infxpenc ). (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem5.g φ G : 𝒫 A 1-1 n ω A n
pwfseqlem5.x φ X A
pwfseqlem5.h φ H : ω 1-1 onto X
pwfseqlem5.ps ψ t A r t × t r We t ω t
pwfseqlem5.n φ b har 𝒫 A ω b N b : b × b 1-1 onto b
pwfseqlem5.o O = OrdIso r t
pwfseqlem5.t T = u dom O , v dom O O u O v
pwfseqlem5.p P = O N dom O T -1
pwfseqlem5.s S = seq ω k V , f V x t suc k f x k P x k O
pwfseqlem5.q Q = y n ω t n dom y S dom y y
pwfseqlem5.i I = x ω , y t O x y
pwfseqlem5.k K = P I Q
Assertion pwfseqlem5 ¬ φ

Proof

Step Hyp Ref Expression
1 pwfseqlem5.g φ G : 𝒫 A 1-1 n ω A n
2 pwfseqlem5.x φ X A
3 pwfseqlem5.h φ H : ω 1-1 onto X
4 pwfseqlem5.ps ψ t A r t × t r We t ω t
5 pwfseqlem5.n φ b har 𝒫 A ω b N b : b × b 1-1 onto b
6 pwfseqlem5.o O = OrdIso r t
7 pwfseqlem5.t T = u dom O , v dom O O u O v
8 pwfseqlem5.p P = O N dom O T -1
9 pwfseqlem5.s S = seq ω k V , f V x t suc k f x k P x k O
10 pwfseqlem5.q Q = y n ω t n dom y S dom y y
11 pwfseqlem5.i I = x ω , y t O x y
12 pwfseqlem5.k K = P I Q
13 vex t V
14 simprl3 φ t A r t × t r We t ω t r We t
15 4 14 sylan2b φ ψ r We t
16 6 oiiso t V r We t O Isom E , r dom O t
17 13 15 16 sylancr φ ψ O Isom E , r dom O t
18 isof1o O Isom E , r dom O t O : dom O 1-1 onto t
19 17 18 syl φ ψ O : dom O 1-1 onto t
20 cardom card ω = ω
21 simprr φ t A r t × t r We t ω t ω t
22 4 21 sylan2b φ ψ ω t
23 6 oien t V r We t dom O t
24 13 15 23 sylancr φ ψ dom O t
25 24 ensymd φ ψ t dom O
26 domentr ω t t dom O ω dom O
27 22 25 26 syl2anc φ ψ ω dom O
28 omelon ω On
29 onenon ω On ω dom card
30 28 29 ax-mp ω dom card
31 6 oion t V dom O On
32 31 elv dom O On
33 onenon dom O On dom O dom card
34 32 33 mp1i φ ψ dom O dom card
35 carddom2 ω dom card dom O dom card card ω card dom O ω dom O
36 30 34 35 sylancr φ ψ card ω card dom O ω dom O
37 27 36 mpbird φ ψ card ω card dom O
38 20 37 eqsstrrid φ ψ ω card dom O
39 cardonle dom O On card dom O dom O
40 32 39 mp1i φ ψ card dom O dom O
41 38 40 sstrd φ ψ ω dom O
42 sseq2 b = dom O ω b ω dom O
43 fveq2 b = dom O N b = N dom O
44 43 f1oeq1d b = dom O N b : b × b 1-1 onto b N dom O : b × b 1-1 onto b
45 xpeq12 b = dom O b = dom O b × b = dom O × dom O
46 45 anidms b = dom O b × b = dom O × dom O
47 46 f1oeq2d b = dom O N dom O : b × b 1-1 onto b N dom O : dom O × dom O 1-1 onto b
48 f1oeq3 b = dom O N dom O : dom O × dom O 1-1 onto b N dom O : dom O × dom O 1-1 onto dom O
49 44 47 48 3bitrd b = dom O N b : b × b 1-1 onto b N dom O : dom O × dom O 1-1 onto dom O
50 42 49 imbi12d b = dom O ω b N b : b × b 1-1 onto b ω dom O N dom O : dom O × dom O 1-1 onto dom O
51 5 adantr φ ψ b har 𝒫 A ω b N b : b × b 1-1 onto b
52 32 a1i φ ψ dom O On
53 1 adantr φ ψ G : 𝒫 A 1-1 n ω A n
54 omex ω V
55 ovex A n V
56 54 55 iunex n ω A n V
57 f1dmex G : 𝒫 A 1-1 n ω A n n ω A n V 𝒫 A V
58 53 56 57 sylancl φ ψ 𝒫 A V
59 pwexb A V 𝒫 A V
60 58 59 sylibr φ ψ A V
61 simprl1 φ t A r t × t r We t ω t t A
62 4 61 sylan2b φ ψ t A
63 ssdomg A V t A t A
64 60 62 63 sylc φ ψ t A
65 canth2g A V A 𝒫 A
66 sdomdom A 𝒫 A A 𝒫 A
67 60 65 66 3syl φ ψ A 𝒫 A
68 domtr t A A 𝒫 A t 𝒫 A
69 64 67 68 syl2anc φ ψ t 𝒫 A
70 endomtr dom O t t 𝒫 A dom O 𝒫 A
71 24 69 70 syl2anc φ ψ dom O 𝒫 A
72 elharval dom O har 𝒫 A dom O On dom O 𝒫 A
73 52 71 72 sylanbrc φ ψ dom O har 𝒫 A
74 50 51 73 rspcdva φ ψ ω dom O N dom O : dom O × dom O 1-1 onto dom O
75 41 74 mpd φ ψ N dom O : dom O × dom O 1-1 onto dom O
76 f1oco O : dom O 1-1 onto t N dom O : dom O × dom O 1-1 onto dom O O N dom O : dom O × dom O 1-1 onto t
77 19 75 76 syl2anc φ ψ O N dom O : dom O × dom O 1-1 onto t
78 f1of O : dom O 1-1 onto t O : dom O t
79 19 78 syl φ ψ O : dom O t
80 79 feqmptd φ ψ O = u dom O O u
81 80 f1oeq1d φ ψ O : dom O 1-1 onto t u dom O O u : dom O 1-1 onto t
82 19 81 mpbid φ ψ u dom O O u : dom O 1-1 onto t
83 79 feqmptd φ ψ O = v dom O O v
84 83 f1oeq1d φ ψ O : dom O 1-1 onto t v dom O O v : dom O 1-1 onto t
85 19 84 mpbid φ ψ v dom O O v : dom O 1-1 onto t
86 82 85 xpf1o φ ψ u dom O , v dom O O u O v : dom O × dom O 1-1 onto t × t
87 f1oeq1 T = u dom O , v dom O O u O v T : dom O × dom O 1-1 onto t × t u dom O , v dom O O u O v : dom O × dom O 1-1 onto t × t
88 7 87 ax-mp T : dom O × dom O 1-1 onto t × t u dom O , v dom O O u O v : dom O × dom O 1-1 onto t × t
89 86 88 sylibr φ ψ T : dom O × dom O 1-1 onto t × t
90 f1ocnv T : dom O × dom O 1-1 onto t × t T -1 : t × t 1-1 onto dom O × dom O
91 89 90 syl φ ψ T -1 : t × t 1-1 onto dom O × dom O
92 f1oco O N dom O : dom O × dom O 1-1 onto t T -1 : t × t 1-1 onto dom O × dom O O N dom O T -1 : t × t 1-1 onto t
93 77 91 92 syl2anc φ ψ O N dom O T -1 : t × t 1-1 onto t
94 f1oeq1 P = O N dom O T -1 P : t × t 1-1 onto t O N dom O T -1 : t × t 1-1 onto t
95 8 94 ax-mp P : t × t 1-1 onto t O N dom O T -1 : t × t 1-1 onto t
96 93 95 sylibr φ ψ P : t × t 1-1 onto t
97 f1of1 P : t × t 1-1 onto t P : t × t 1-1 t
98 96 97 syl φ ψ P : t × t 1-1 t
99 f1of1 O : dom O 1-1 onto t O : dom O 1-1 t
100 19 99 syl φ ψ O : dom O 1-1 t
101 f1ssres O : dom O 1-1 t ω dom O O ω : ω 1-1 t
102 100 41 101 syl2anc φ ψ O ω : ω 1-1 t
103 f1f1orn O ω : ω 1-1 t O ω : ω 1-1 onto ran O ω
104 102 103 syl φ ψ O ω : ω 1-1 onto ran O ω
105 79 41 feqresmpt φ ψ O ω = x ω O x
106 105 f1oeq1d φ ψ O ω : ω 1-1 onto ran O ω x ω O x : ω 1-1 onto ran O ω
107 104 106 mpbid φ ψ x ω O x : ω 1-1 onto ran O ω
108 mptresid I t = y t y
109 108 eqcomi y t y = I t
110 f1oi I t : t 1-1 onto t
111 f1oeq1 y t y = I t y t y : t 1-1 onto t I t : t 1-1 onto t
112 110 111 mpbiri y t y = I t y t y : t 1-1 onto t
113 109 112 mp1i φ ψ y t y : t 1-1 onto t
114 107 113 xpf1o φ ψ x ω , y t O x y : ω × t 1-1 onto ran O ω × t
115 f1oeq1 I = x ω , y t O x y I : ω × t 1-1 onto ran O ω × t x ω , y t O x y : ω × t 1-1 onto ran O ω × t
116 11 115 ax-mp I : ω × t 1-1 onto ran O ω × t x ω , y t O x y : ω × t 1-1 onto ran O ω × t
117 114 116 sylibr φ ψ I : ω × t 1-1 onto ran O ω × t
118 f1of1 I : ω × t 1-1 onto ran O ω × t I : ω × t 1-1 ran O ω × t
119 117 118 syl φ ψ I : ω × t 1-1 ran O ω × t
120 f1f O ω : ω 1-1 t O ω : ω t
121 frn O ω : ω t ran O ω t
122 xpss1 ran O ω t ran O ω × t t × t
123 102 120 121 122 4syl φ ψ ran O ω × t t × t
124 f1ss I : ω × t 1-1 ran O ω × t ran O ω × t t × t I : ω × t 1-1 t × t
125 119 123 124 syl2anc φ ψ I : ω × t 1-1 t × t
126 f1co P : t × t 1-1 t I : ω × t 1-1 t × t P I : ω × t 1-1 t
127 98 125 126 syl2anc φ ψ P I : ω × t 1-1 t
128 13 a1i φ ψ t V
129 peano1 ω
130 129 a1i φ ψ ω
131 41 130 sseldd φ ψ dom O
132 79 131 ffvelrnd φ ψ O t
133 128 132 96 9 10 fseqenlem2 φ ψ Q : n ω t n 1-1 ω × t
134 f1co P I : ω × t 1-1 t Q : n ω t n 1-1 ω × t P I Q : n ω t n 1-1 t
135 127 133 134 syl2anc φ ψ P I Q : n ω t n 1-1 t
136 f1eq1 K = P I Q K : n ω t n 1-1 t P I Q : n ω t n 1-1 t
137 12 136 ax-mp K : n ω t n 1-1 t P I Q : n ω t n 1-1 t
138 135 137 sylibr φ ψ K : n ω t n 1-1 t
139 eqid G i t | K -1 i ran G ¬ i G -1 K -1 i = G i t | K -1 i ran G ¬ i G -1 K -1 i
140 eqid t V , r V if t Fin H card t G i t | K -1 i ran G ¬ i G -1 K -1 i z ω | ¬ G i t | K -1 i ran G ¬ i G -1 K -1 i z t = t V , r V if t Fin H card t G i t | K -1 i ran G ¬ i G -1 K -1 i z ω | ¬ G i t | K -1 i ran G ¬ i G -1 K -1 i z t
141 eqid c d | c A d c × c d We c m c [˙ d -1 m / j]˙ j t V , r V if t Fin H card t G i t | K -1 i ran G ¬ i G -1 K -1 i z ω | ¬ G i t | K -1 i ran G ¬ i G -1 K -1 i z t d j × j = m = c d | c A d c × c d We c m c [˙ d -1 m / j]˙ j t V , r V if t Fin H card t G i t | K -1 i ran G ¬ i G -1 K -1 i z ω | ¬ G i t | K -1 i ran G ¬ i G -1 K -1 i z t d j × j = m
142 141 fpwwe2cbv c d | c A d c × c d We c m c [˙ d -1 m / j]˙ j t V , r V if t Fin H card t G i t | K -1 i ran G ¬ i G -1 K -1 i z ω | ¬ G i t | K -1 i ran G ¬ i G -1 K -1 i z t d j × j = m = a s | a A s a × a s We a b a [˙ s -1 b / w]˙ w t V , r V if t Fin H card t G i t | K -1 i ran G ¬ i G -1 K -1 i z ω | ¬ G i t | K -1 i ran G ¬ i G -1 K -1 i z t s w × w = b
143 eqid dom c d | c A d c × c d We c m c [˙ d -1 m / j]˙ j t V , r V if t Fin H card t G i t | K -1 i ran G ¬ i G -1 K -1 i z ω | ¬ G i t | K -1 i ran G ¬ i G -1 K -1 i z t d j × j = m = dom c d | c A d c × c d We c m c [˙ d -1 m / j]˙ j t V , r V if t Fin H card t G i t | K -1 i ran G ¬ i G -1 K -1 i z ω | ¬ G i t | K -1 i ran G ¬ i G -1 K -1 i z t d j × j = m
144 1 2 3 4 138 139 140 142 143 pwfseqlem4 ¬ φ