Metamath Proof Explorer


Theorem pwsco1rhm

Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pwsco1rhm.y Y=R𝑠A
pwsco1rhm.z Z=R𝑠B
pwsco1rhm.c C=BaseZ
pwsco1rhm.r φRRing
pwsco1rhm.a φAV
pwsco1rhm.b φBW
pwsco1rhm.f φF:AB
Assertion pwsco1rhm φgCgFZRingHomY

Proof

Step Hyp Ref Expression
1 pwsco1rhm.y Y=R𝑠A
2 pwsco1rhm.z Z=R𝑠B
3 pwsco1rhm.c C=BaseZ
4 pwsco1rhm.r φRRing
5 pwsco1rhm.a φAV
6 pwsco1rhm.b φBW
7 pwsco1rhm.f φF:AB
8 2 pwsring RRingBWZRing
9 4 6 8 syl2anc φZRing
10 1 pwsring RRingAVYRing
11 4 5 10 syl2anc φYRing
12 ringmnd RRingRMnd
13 4 12 syl φRMnd
14 1 2 3 13 5 6 7 pwsco1mhm φgCgFZMndHomY
15 ringgrp ZRingZGrp
16 9 15 syl φZGrp
17 ringgrp YRingYGrp
18 11 17 syl φYGrp
19 ghmmhmb ZGrpYGrpZGrpHomY=ZMndHomY
20 16 18 19 syl2anc φZGrpHomY=ZMndHomY
21 14 20 eleqtrrd φgCgFZGrpHomY
22 eqid mulGrpR𝑠A=mulGrpR𝑠A
23 eqid mulGrpR𝑠B=mulGrpR𝑠B
24 eqid BasemulGrpR𝑠B=BasemulGrpR𝑠B
25 eqid mulGrpR=mulGrpR
26 25 ringmgp RRingmulGrpRMnd
27 4 26 syl φmulGrpRMnd
28 22 23 24 27 5 6 7 pwsco1mhm φgBasemulGrpR𝑠BgFmulGrpR𝑠BMndHommulGrpR𝑠A
29 eqid BaseR=BaseR
30 2 29 pwsbas RMndBWBaseRB=BaseZ
31 13 6 30 syl2anc φBaseRB=BaseZ
32 31 3 eqtr4di φBaseRB=C
33 25 29 mgpbas BaseR=BasemulGrpR
34 23 33 pwsbas mulGrpRMndBWBaseRB=BasemulGrpR𝑠B
35 27 6 34 syl2anc φBaseRB=BasemulGrpR𝑠B
36 32 35 eqtr3d φC=BasemulGrpR𝑠B
37 36 mpteq1d φgCgF=gBasemulGrpR𝑠BgF
38 eqidd φBasemulGrpZ=BasemulGrpZ
39 eqidd φBasemulGrpY=BasemulGrpY
40 eqid mulGrpZ=mulGrpZ
41 eqid BasemulGrpZ=BasemulGrpZ
42 eqid +mulGrpZ=+mulGrpZ
43 eqid +mulGrpR𝑠B=+mulGrpR𝑠B
44 2 25 23 40 41 24 42 43 pwsmgp RRingBWBasemulGrpZ=BasemulGrpR𝑠B+mulGrpZ=+mulGrpR𝑠B
45 4 6 44 syl2anc φBasemulGrpZ=BasemulGrpR𝑠B+mulGrpZ=+mulGrpR𝑠B
46 45 simpld φBasemulGrpZ=BasemulGrpR𝑠B
47 eqid mulGrpY=mulGrpY
48 eqid BasemulGrpY=BasemulGrpY
49 eqid BasemulGrpR𝑠A=BasemulGrpR𝑠A
50 eqid +mulGrpY=+mulGrpY
51 eqid +mulGrpR𝑠A=+mulGrpR𝑠A
52 1 25 22 47 48 49 50 51 pwsmgp RRingAVBasemulGrpY=BasemulGrpR𝑠A+mulGrpY=+mulGrpR𝑠A
53 4 5 52 syl2anc φBasemulGrpY=BasemulGrpR𝑠A+mulGrpY=+mulGrpR𝑠A
54 53 simpld φBasemulGrpY=BasemulGrpR𝑠A
55 45 simprd φ+mulGrpZ=+mulGrpR𝑠B
56 55 oveqdr φxBasemulGrpZyBasemulGrpZx+mulGrpZy=x+mulGrpR𝑠By
57 53 simprd φ+mulGrpY=+mulGrpR𝑠A
58 57 oveqdr φxBasemulGrpYyBasemulGrpYx+mulGrpYy=x+mulGrpR𝑠Ay
59 38 39 46 54 56 58 mhmpropd φmulGrpZMndHommulGrpY=mulGrpR𝑠BMndHommulGrpR𝑠A
60 28 37 59 3eltr4d φgCgFmulGrpZMndHommulGrpY
61 21 60 jca φgCgFZGrpHomYgCgFmulGrpZMndHommulGrpY
62 40 47 isrhm gCgFZRingHomYZRingYRinggCgFZGrpHomYgCgFmulGrpZMndHommulGrpY
63 9 11 61 62 syl21anbrc φgCgFZRingHomY