Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwsco1rhm.y | |
|
pwsco1rhm.z | |
||
pwsco1rhm.c | |
||
pwsco1rhm.r | |
||
pwsco1rhm.a | |
||
pwsco1rhm.b | |
||
pwsco1rhm.f | |
||
Assertion | pwsco1rhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsco1rhm.y | |
|
2 | pwsco1rhm.z | |
|
3 | pwsco1rhm.c | |
|
4 | pwsco1rhm.r | |
|
5 | pwsco1rhm.a | |
|
6 | pwsco1rhm.b | |
|
7 | pwsco1rhm.f | |
|
8 | 2 | pwsring | |
9 | 4 6 8 | syl2anc | |
10 | 1 | pwsring | |
11 | 4 5 10 | syl2anc | |
12 | ringmnd | |
|
13 | 4 12 | syl | |
14 | 1 2 3 13 5 6 7 | pwsco1mhm | |
15 | ringgrp | |
|
16 | 9 15 | syl | |
17 | ringgrp | |
|
18 | 11 17 | syl | |
19 | ghmmhmb | |
|
20 | 16 18 19 | syl2anc | |
21 | 14 20 | eleqtrrd | |
22 | eqid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | 25 | ringmgp | |
27 | 4 26 | syl | |
28 | 22 23 24 27 5 6 7 | pwsco1mhm | |
29 | eqid | |
|
30 | 2 29 | pwsbas | |
31 | 13 6 30 | syl2anc | |
32 | 31 3 | eqtr4di | |
33 | 25 29 | mgpbas | |
34 | 23 33 | pwsbas | |
35 | 27 6 34 | syl2anc | |
36 | 32 35 | eqtr3d | |
37 | 36 | mpteq1d | |
38 | eqidd | |
|
39 | eqidd | |
|
40 | eqid | |
|
41 | eqid | |
|
42 | eqid | |
|
43 | eqid | |
|
44 | 2 25 23 40 41 24 42 43 | pwsmgp | |
45 | 4 6 44 | syl2anc | |
46 | 45 | simpld | |
47 | eqid | |
|
48 | eqid | |
|
49 | eqid | |
|
50 | eqid | |
|
51 | eqid | |
|
52 | 1 25 22 47 48 49 50 51 | pwsmgp | |
53 | 4 5 52 | syl2anc | |
54 | 53 | simpld | |
55 | 45 | simprd | |
56 | 55 | oveqdr | |
57 | 53 | simprd | |
58 | 57 | oveqdr | |
59 | 38 39 46 54 56 58 | mhmpropd | |
60 | 28 37 59 | 3eltr4d | |
61 | 21 60 | jca | |
62 | 40 47 | isrhm | |
63 | 9 11 61 62 | syl21anbrc | |