Metamath Proof Explorer


Theorem pwsle

Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Hypotheses pwsle.y Y=R𝑠I
pwsle.v B=BaseY
pwsle.o O=R
pwsle.l ˙=Y
Assertion pwsle RVIW˙=rOB×B

Proof

Step Hyp Ref Expression
1 pwsle.y Y=R𝑠I
2 pwsle.v B=BaseY
3 pwsle.o O=R
4 pwsle.l ˙=Y
5 vex fV
6 vex gV
7 5 6 prss fBgBfgB
8 eqid ScalarR=ScalarR
9 1 8 pwsval RVIWY=ScalarR𝑠I×R
10 9 fveq2d RVIWBaseY=BaseScalarR𝑠I×R
11 2 10 eqtrid RVIWB=BaseScalarR𝑠I×R
12 11 sseq2d RVIWfgBfgBaseScalarR𝑠I×R
13 7 12 bitrid RVIWfBgBfgBaseScalarR𝑠I×R
14 13 anbi1d RVIWfBgBxIfxI×RxgxfgBaseScalarR𝑠I×RxIfxI×Rxgx
15 fvconst2g RVxII×Rx=R
16 15 ad4ant14 RVIWfBgBxII×Rx=R
17 16 fveq2d RVIWfBgBxII×Rx=R
18 17 3 eqtr4di RVIWfBgBxII×Rx=O
19 18 breqd RVIWfBgBxIfxI×RxgxfxOgx
20 19 ralbidva RVIWfBgBxIfxI×RxgxxIfxOgx
21 eqid BaseR=BaseR
22 simpll RVIWfBgBRV
23 simplr RVIWfBgBIW
24 simprl RVIWfBgBfB
25 1 21 2 22 23 24 pwselbas RVIWfBgBf:IBaseR
26 25 ffnd RVIWfBgBfFnI
27 simprr RVIWfBgBgB
28 1 21 2 22 23 27 pwselbas RVIWfBgBg:IBaseR
29 28 ffnd RVIWfBgBgFnI
30 inidm II=I
31 eqidd RVIWfBgBxIfx=fx
32 eqidd RVIWfBgBxIgx=gx
33 26 29 24 27 30 31 32 ofrfvalg RVIWfBgBfOfgxIfxOgx
34 20 33 bitr4d RVIWfBgBxIfxI×RxgxfOfg
35 34 pm5.32da RVIWfBgBxIfxI×RxgxfBgBfOfg
36 brinxp2 frOB×BgfBgBfOfg
37 35 36 bitr4di RVIWfBgBxIfxI×RxgxfrOB×Bg
38 14 37 bitr3d RVIWfgBaseScalarR𝑠I×RxIfxI×RxgxfrOB×Bg
39 38 opabbidv RVIWfg|fgBaseScalarR𝑠I×RxIfxI×Rxgx=fg|frOB×Bg
40 9 fveq2d RVIWY=ScalarR𝑠I×R
41 4 40 eqtrid RVIW˙=ScalarR𝑠I×R
42 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
43 fvexd RVIWScalarRV
44 simpr RVIWIW
45 snex RV
46 xpexg IWRVI×RV
47 44 45 46 sylancl RVIWI×RV
48 eqid BaseScalarR𝑠I×R=BaseScalarR𝑠I×R
49 snnzg RVR
50 49 adantr RVIWR
51 dmxp RdomI×R=I
52 50 51 syl RVIWdomI×R=I
53 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
54 42 43 47 48 52 53 prdsle RVIWScalarR𝑠I×R=fg|fgBaseScalarR𝑠I×RxIfxI×Rxgx
55 41 54 eqtrd RVIW˙=fg|fgBaseScalarR𝑠I×RxIfxI×Rxgx
56 relinxp RelrOB×B
57 56 a1i RVIWRelrOB×B
58 dfrel4v RelrOB×BrOB×B=fg|frOB×Bg
59 57 58 sylib RVIWrOB×B=fg|frOB×Bg
60 39 55 59 3eqtr4d RVIW˙=rOB×B