Metamath Proof Explorer


Theorem pzriprnglem11

Description: Lemma 11 for pzriprng : The base set of the quotient of R and J . (Contributed by AV, 22-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
pzriprng.j J=R𝑠I
pzriprng.1 1˙=1J
pzriprng.g ˙=R~QGI
pzriprng.q Q=R/𝑠˙
Assertion pzriprnglem11 BaseQ=r×r

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 pzriprng.j J=R𝑠I
4 pzriprng.1 1˙=1J
5 pzriprng.g ˙=R~QGI
6 pzriprng.q Q=R/𝑠˙
7 df-qs ×/˙=e|p×e=p˙
8 6 a1i ˙=R~QGIQ=R/𝑠˙
9 1 pzriprnglem2 BaseR=×
10 9 eqcomi ×=BaseR
11 10 a1i ˙=R~QGI×=BaseR
12 ovexd ˙=R~QGIR~QGIV
13 5 12 eqeltrid ˙=R~QGI˙V
14 1 pzriprnglem1 RRng
15 14 a1i ˙=R~QGIRRng
16 8 11 13 15 qusbas ˙=R~QGI×/˙=BaseQ
17 5 16 ax-mp ×/˙=BaseQ
18 nfcv _se|e=p˙
19 nfcv _re|e=p˙
20 nfcv _pe|e=sr˙
21 eceq1 p=srp˙=sr˙
22 21 eqeq2d p=sre=p˙e=sr˙
23 22 abbidv p=sre|e=p˙=e|e=sr˙
24 18 19 20 23 iunxpf p×e|e=p˙=sre|e=sr˙
25 iunab p×e|e=p˙=e|p×e=p˙
26 iuncom sre|e=sr˙=rse|e=sr˙
27 df-sn sr˙=e|e=sr˙
28 27 eqcomi e|e=sr˙=sr˙
29 28 a1i se|e=sr˙=sr˙
30 29 iuneq2i se|e=sr˙=ssr˙
31 simpr rsp=sr˙p=sr˙
32 1 2 3 4 5 pzriprnglem10 srsr˙=×r
33 32 ancoms rssr˙=×r
34 33 adantr rsp=sr˙sr˙=×r
35 31 34 eqtrd rsp=sr˙p=×r
36 35 ex rsp=sr˙p=×r
37 36 rexlimdva rsp=sr˙p=×r
38 0zd rp=×r0
39 simpr rp=×rp=×r
40 opeq1 s=0sr=0r
41 40 eceq1d s=0sr˙=0r˙
42 39 41 eqeqan12d rp=×rs=0p=sr˙×r=0r˙
43 0zd r0
44 1 2 3 4 5 pzriprnglem10 0r0r˙=×r
45 43 44 mpancom r0r˙=×r
46 45 eqcomd r×r=0r˙
47 46 adantr rp=×r×r=0r˙
48 38 42 47 rspcedvd rp=×rsp=sr˙
49 48 ex rp=×rsp=sr˙
50 37 49 impbid rsp=sr˙p=×r
51 50 abbidv rp|sp=sr˙=p|p=×r
52 iunsn ssr˙=p|sp=sr˙
53 df-sn ×r=p|p=×r
54 51 52 53 3eqtr4g rssr˙=×r
55 30 54 eqtrid rse|e=sr˙=×r
56 55 iuneq2i rse|e=sr˙=r×r
57 26 56 eqtri sre|e=sr˙=r×r
58 24 25 57 3eqtr3i e|p×e=p˙=r×r
59 7 17 58 3eqtr3i BaseQ=r×r