Metamath Proof Explorer


Theorem pzriprnglem11

Description: Lemma 11 for pzriprng : The base set of the quotient of R and J . (Contributed by AV, 22-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R = ring × 𝑠 ring
pzriprng.i I = × 0
pzriprng.j J = R 𝑠 I
pzriprng.1 1 ˙ = 1 J
pzriprng.g ˙ = R ~ QG I
pzriprng.q Q = R / 𝑠 ˙
Assertion pzriprnglem11 Base Q = r × r

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 pzriprng.i I = × 0
3 pzriprng.j J = R 𝑠 I
4 pzriprng.1 1 ˙ = 1 J
5 pzriprng.g ˙ = R ~ QG I
6 pzriprng.q Q = R / 𝑠 ˙
7 df-qs × / ˙ = e | p × e = p ˙
8 6 a1i ˙ = R ~ QG I Q = R / 𝑠 ˙
9 1 pzriprnglem2 Base R = ×
10 9 eqcomi × = Base R
11 10 a1i ˙ = R ~ QG I × = Base R
12 ovexd ˙ = R ~ QG I R ~ QG I V
13 5 12 eqeltrid ˙ = R ~ QG I ˙ V
14 1 pzriprnglem1 R Rng
15 14 a1i ˙ = R ~ QG I R Rng
16 8 11 13 15 qusbas ˙ = R ~ QG I × / ˙ = Base Q
17 5 16 ax-mp × / ˙ = Base Q
18 nfcv _ s e | e = p ˙
19 nfcv _ r e | e = p ˙
20 nfcv _ p e | e = s r ˙
21 eceq1 p = s r p ˙ = s r ˙
22 21 eqeq2d p = s r e = p ˙ e = s r ˙
23 22 abbidv p = s r e | e = p ˙ = e | e = s r ˙
24 18 19 20 23 iunxpf p × e | e = p ˙ = s r e | e = s r ˙
25 iunab p × e | e = p ˙ = e | p × e = p ˙
26 iuncom s r e | e = s r ˙ = r s e | e = s r ˙
27 df-sn s r ˙ = e | e = s r ˙
28 27 eqcomi e | e = s r ˙ = s r ˙
29 28 a1i s e | e = s r ˙ = s r ˙
30 29 iuneq2i s e | e = s r ˙ = s s r ˙
31 simpr r s p = s r ˙ p = s r ˙
32 1 2 3 4 5 pzriprnglem10 s r s r ˙ = × r
33 32 ancoms r s s r ˙ = × r
34 33 adantr r s p = s r ˙ s r ˙ = × r
35 31 34 eqtrd r s p = s r ˙ p = × r
36 35 ex r s p = s r ˙ p = × r
37 36 rexlimdva r s p = s r ˙ p = × r
38 0zd r p = × r 0
39 simpr r p = × r p = × r
40 opeq1 s = 0 s r = 0 r
41 40 eceq1d s = 0 s r ˙ = 0 r ˙
42 39 41 eqeqan12d r p = × r s = 0 p = s r ˙ × r = 0 r ˙
43 0zd r 0
44 1 2 3 4 5 pzriprnglem10 0 r 0 r ˙ = × r
45 43 44 mpancom r 0 r ˙ = × r
46 45 eqcomd r × r = 0 r ˙
47 46 adantr r p = × r × r = 0 r ˙
48 38 42 47 rspcedvd r p = × r s p = s r ˙
49 48 ex r p = × r s p = s r ˙
50 37 49 impbid r s p = s r ˙ p = × r
51 50 abbidv r p | s p = s r ˙ = p | p = × r
52 iunsn s s r ˙ = p | s p = s r ˙
53 df-sn × r = p | p = × r
54 51 52 53 3eqtr4g r s s r ˙ = × r
55 30 54 eqtrid r s e | e = s r ˙ = × r
56 55 iuneq2i r s e | e = s r ˙ = r × r
57 26 56 eqtri s r e | e = s r ˙ = r × r
58 24 25 57 3eqtr3i e | p × e = p ˙ = r × r
59 7 17 58 3eqtr3i Base Q = r × r