Description: Lemma 11 for pzriprng : The base set of the quotient of R and J . (Contributed by AV, 22-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pzriprng.r | |
|
pzriprng.i | |
||
pzriprng.j | |
||
pzriprng.1 | |
||
pzriprng.g | |
||
pzriprng.q | |
||
Assertion | pzriprnglem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | |
|
2 | pzriprng.i | |
|
3 | pzriprng.j | |
|
4 | pzriprng.1 | |
|
5 | pzriprng.g | |
|
6 | pzriprng.q | |
|
7 | df-qs | |
|
8 | 6 | a1i | |
9 | 1 | pzriprnglem2 | |
10 | 9 | eqcomi | |
11 | 10 | a1i | |
12 | ovexd | |
|
13 | 5 12 | eqeltrid | |
14 | 1 | pzriprnglem1 | |
15 | 14 | a1i | |
16 | 8 11 13 15 | qusbas | |
17 | 5 16 | ax-mp | |
18 | nfcv | |
|
19 | nfcv | |
|
20 | nfcv | |
|
21 | eceq1 | |
|
22 | 21 | eqeq2d | |
23 | 22 | abbidv | |
24 | 18 19 20 23 | iunxpf | |
25 | iunab | |
|
26 | iuncom | |
|
27 | df-sn | |
|
28 | 27 | eqcomi | |
29 | 28 | a1i | |
30 | 29 | iuneq2i | |
31 | simpr | |
|
32 | 1 2 3 4 5 | pzriprnglem10 | |
33 | 32 | ancoms | |
34 | 33 | adantr | |
35 | 31 34 | eqtrd | |
36 | 35 | ex | |
37 | 36 | rexlimdva | |
38 | 0zd | |
|
39 | simpr | |
|
40 | opeq1 | |
|
41 | 40 | eceq1d | |
42 | 39 41 | eqeqan12d | |
43 | 0zd | |
|
44 | 1 2 3 4 5 | pzriprnglem10 | |
45 | 43 44 | mpancom | |
46 | 45 | eqcomd | |
47 | 46 | adantr | |
48 | 38 42 47 | rspcedvd | |
49 | 48 | ex | |
50 | 37 49 | impbid | |
51 | 50 | abbidv | |
52 | iunsn | |
|
53 | df-sn | |
|
54 | 51 52 53 | 3eqtr4g | |
55 | 30 54 | eqtrid | |
56 | 55 | iuneq2i | |
57 | 26 56 | eqtri | |
58 | 24 25 57 | 3eqtr3i | |
59 | 7 17 58 | 3eqtr3i | |