| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifn |  | 
						
							| 2 | 1 | 3ad2ant1 |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | simpll1 |  | 
						
							| 5 | 4 | eldifad |  | 
						
							| 6 |  | simp2r |  | 
						
							| 7 | 6 | ad2antrr |  | 
						
							| 8 |  | qcn |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | simp3r |  | 
						
							| 11 | 10 | ad2antrr |  | 
						
							| 12 |  | qcn |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 5 9 13 | subdid |  | 
						
							| 15 |  | qsubcl |  | 
						
							| 16 | 7 11 15 | syl2anc |  | 
						
							| 17 |  | qcn |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 18 5 | mulcomd |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 |  | simp2l |  | 
						
							| 22 | 21 | ad2antrr |  | 
						
							| 23 |  | qcn |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 5 9 | mulcld |  | 
						
							| 26 |  | simp3l |  | 
						
							| 27 | 26 | ad2antrr |  | 
						
							| 28 |  | qcn |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 5 13 | mulcld |  | 
						
							| 31 | 24 25 29 30 | addsubeq4d |  | 
						
							| 32 | 20 31 | mpbid |  | 
						
							| 33 | 14 19 32 | 3eqtr4d |  | 
						
							| 34 |  | qsubcl |  | 
						
							| 35 | 27 22 34 | syl2anc |  | 
						
							| 36 |  | qcn |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 |  | subeq0 |  | 
						
							| 40 | 39 | necon3abid |  | 
						
							| 41 | 9 13 40 | syl2anc |  | 
						
							| 42 | 38 41 | mpbird |  | 
						
							| 43 | 37 18 5 42 | divmuld |  | 
						
							| 44 | 33 43 | mpbird |  | 
						
							| 45 |  | qdivcl |  | 
						
							| 46 | 35 16 42 45 | syl3anc |  | 
						
							| 47 | 44 46 | eqeltrrd |  | 
						
							| 48 | 47 | ex |  | 
						
							| 49 | 3 48 | mt3d |  | 
						
							| 50 |  | simpl2l |  | 
						
							| 51 | 50 23 | syl |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 |  | simpl3l |  | 
						
							| 54 | 53 28 | syl |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 |  | simpl1 |  | 
						
							| 57 | 56 | eldifad |  | 
						
							| 58 |  | simpl3r |  | 
						
							| 59 | 58 12 | syl |  | 
						
							| 60 | 57 59 | mulcld |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 |  | simpr |  | 
						
							| 63 | 62 | eqcomd |  | 
						
							| 64 | 63 | oveq2d |  | 
						
							| 65 | 64 | oveq2d |  | 
						
							| 66 |  | simplr |  | 
						
							| 67 | 65 66 | eqtrd |  | 
						
							| 68 | 52 55 61 67 | addcan2ad |  | 
						
							| 69 | 68 | ex |  | 
						
							| 70 | 49 69 | jcai |  | 
						
							| 71 | 70 | ancomd |  | 
						
							| 72 | 71 | ex |  | 
						
							| 73 |  | id |  | 
						
							| 74 |  | oveq2 |  | 
						
							| 75 | 73 74 | oveqan12d |  | 
						
							| 76 | 72 75 | impbid1 |  |