Metamath Proof Explorer


Theorem qirropth

Description: This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion qirropth ABCDEB+AC=D+AEB=DC=E

Proof

Step Hyp Ref Expression
1 eldifn A¬A
2 1 3ad2ant1 ABCDE¬A
3 2 adantr ABCDEB+AC=D+AE¬A
4 simpll1 ABCDEB+AC=D+AE¬C=EA
5 4 eldifad ABCDEB+AC=D+AE¬C=EA
6 simp2r ABCDEC
7 6 ad2antrr ABCDEB+AC=D+AE¬C=EC
8 qcn CC
9 7 8 syl ABCDEB+AC=D+AE¬C=EC
10 simp3r ABCDEE
11 10 ad2antrr ABCDEB+AC=D+AE¬C=EE
12 qcn EE
13 11 12 syl ABCDEB+AC=D+AE¬C=EE
14 5 9 13 subdid ABCDEB+AC=D+AE¬C=EACE=ACAE
15 qsubcl CECE
16 7 11 15 syl2anc ABCDEB+AC=D+AE¬C=ECE
17 qcn CECE
18 16 17 syl ABCDEB+AC=D+AE¬C=ECE
19 18 5 mulcomd ABCDEB+AC=D+AE¬C=ECEA=ACE
20 simplr ABCDEB+AC=D+AE¬C=EB+AC=D+AE
21 simp2l ABCDEB
22 21 ad2antrr ABCDEB+AC=D+AE¬C=EB
23 qcn BB
24 22 23 syl ABCDEB+AC=D+AE¬C=EB
25 5 9 mulcld ABCDEB+AC=D+AE¬C=EAC
26 simp3l ABCDED
27 26 ad2antrr ABCDEB+AC=D+AE¬C=ED
28 qcn DD
29 27 28 syl ABCDEB+AC=D+AE¬C=ED
30 5 13 mulcld ABCDEB+AC=D+AE¬C=EAE
31 24 25 29 30 addsubeq4d ABCDEB+AC=D+AE¬C=EB+AC=D+AEDB=ACAE
32 20 31 mpbid ABCDEB+AC=D+AE¬C=EDB=ACAE
33 14 19 32 3eqtr4d ABCDEB+AC=D+AE¬C=ECEA=DB
34 qsubcl DBDB
35 27 22 34 syl2anc ABCDEB+AC=D+AE¬C=EDB
36 qcn DBDB
37 35 36 syl ABCDEB+AC=D+AE¬C=EDB
38 simpr ABCDEB+AC=D+AE¬C=E¬C=E
39 subeq0 CECE=0C=E
40 39 necon3abid CECE0¬C=E
41 9 13 40 syl2anc ABCDEB+AC=D+AE¬C=ECE0¬C=E
42 38 41 mpbird ABCDEB+AC=D+AE¬C=ECE0
43 37 18 5 42 divmuld ABCDEB+AC=D+AE¬C=EDBCE=ACEA=DB
44 33 43 mpbird ABCDEB+AC=D+AE¬C=EDBCE=A
45 qdivcl DBCECE0DBCE
46 35 16 42 45 syl3anc ABCDEB+AC=D+AE¬C=EDBCE
47 44 46 eqeltrrd ABCDEB+AC=D+AE¬C=EA
48 47 ex ABCDEB+AC=D+AE¬C=EA
49 3 48 mt3d ABCDEB+AC=D+AEC=E
50 simpl2l ABCDEB+AC=D+AEB
51 50 23 syl ABCDEB+AC=D+AEB
52 51 adantr ABCDEB+AC=D+AEC=EB
53 simpl3l ABCDEB+AC=D+AED
54 53 28 syl ABCDEB+AC=D+AED
55 54 adantr ABCDEB+AC=D+AEC=ED
56 simpl1 ABCDEB+AC=D+AEA
57 56 eldifad ABCDEB+AC=D+AEA
58 simpl3r ABCDEB+AC=D+AEE
59 58 12 syl ABCDEB+AC=D+AEE
60 57 59 mulcld ABCDEB+AC=D+AEAE
61 60 adantr ABCDEB+AC=D+AEC=EAE
62 simpr ABCDEB+AC=D+AEC=EC=E
63 62 eqcomd ABCDEB+AC=D+AEC=EE=C
64 63 oveq2d ABCDEB+AC=D+AEC=EAE=AC
65 64 oveq2d ABCDEB+AC=D+AEC=EB+AE=B+AC
66 simplr ABCDEB+AC=D+AEC=EB+AC=D+AE
67 65 66 eqtrd ABCDEB+AC=D+AEC=EB+AE=D+AE
68 52 55 61 67 addcan2ad ABCDEB+AC=D+AEC=EB=D
69 68 ex ABCDEB+AC=D+AEC=EB=D
70 49 69 jcai ABCDEB+AC=D+AEC=EB=D
71 70 ancomd ABCDEB+AC=D+AEB=DC=E
72 71 ex ABCDEB+AC=D+AEB=DC=E
73 id B=DB=D
74 oveq2 C=EAC=AE
75 73 74 oveqan12d B=DC=EB+AC=D+AE
76 72 75 impbid1 ABCDEB+AC=D+AEB=DC=E