Metamath Proof Explorer


Theorem qtopval2

Description: Value of the quotient topology function when F is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtopval.1 X=J
Assertion qtopval2 JVF:ZontoYZXJqTopF=s𝒫Y|F-1sJ

Proof

Step Hyp Ref Expression
1 qtopval.1 X=J
2 simp1 JVF:ZontoYZXJV
3 fof F:ZontoYF:ZY
4 3 3ad2ant2 JVF:ZontoYZXF:ZY
5 uniexg JVJV
6 5 3ad2ant1 JVF:ZontoYZXJV
7 1 6 eqeltrid JVF:ZontoYZXXV
8 simp3 JVF:ZontoYZXZX
9 7 8 ssexd JVF:ZontoYZXZV
10 4 9 fexd JVF:ZontoYZXFV
11 1 qtopval JVFVJqTopF=s𝒫FX|F-1sXJ
12 2 10 11 syl2anc JVF:ZontoYZXJqTopF=s𝒫FX|F-1sXJ
13 imassrn FXranF
14 forn F:ZontoYranF=Y
15 14 3ad2ant2 JVF:ZontoYZXranF=Y
16 13 15 sseqtrid JVF:ZontoYZXFXY
17 foima F:ZontoYFZ=Y
18 17 3ad2ant2 JVF:ZontoYZXFZ=Y
19 imass2 ZXFZFX
20 8 19 syl JVF:ZontoYZXFZFX
21 18 20 eqsstrrd JVF:ZontoYZXYFX
22 16 21 eqssd JVF:ZontoYZXFX=Y
23 22 pweqd JVF:ZontoYZX𝒫FX=𝒫Y
24 cnvimass F-1sdomF
25 24 4 fssdm JVF:ZontoYZXF-1sZ
26 25 8 sstrd JVF:ZontoYZXF-1sX
27 df-ss F-1sXF-1sX=F-1s
28 26 27 sylib JVF:ZontoYZXF-1sX=F-1s
29 28 eleq1d JVF:ZontoYZXF-1sXJF-1sJ
30 23 29 rabeqbidv JVF:ZontoYZXs𝒫FX|F-1sXJ=s𝒫Y|F-1sJ
31 12 30 eqtrd JVF:ZontoYZXJqTopF=s𝒫Y|F-1sJ