Description: Value of the quotient topology function when F is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | qtopval.1 | |
|
Assertion | qtopval2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopval.1 | |
|
2 | simp1 | |
|
3 | fof | |
|
4 | 3 | 3ad2ant2 | |
5 | uniexg | |
|
6 | 5 | 3ad2ant1 | |
7 | 1 6 | eqeltrid | |
8 | simp3 | |
|
9 | 7 8 | ssexd | |
10 | 4 9 | fexd | |
11 | 1 | qtopval | |
12 | 2 10 11 | syl2anc | |
13 | imassrn | |
|
14 | forn | |
|
15 | 14 | 3ad2ant2 | |
16 | 13 15 | sseqtrid | |
17 | foima | |
|
18 | 17 | 3ad2ant2 | |
19 | imass2 | |
|
20 | 8 19 | syl | |
21 | 18 20 | eqsstrrd | |
22 | 16 21 | eqssd | |
23 | 22 | pweqd | |
24 | cnvimass | |
|
25 | 24 4 | fssdm | |
26 | 25 8 | sstrd | |
27 | df-ss | |
|
28 | 26 27 | sylib | |
29 | 28 | eleq1d | |
30 | 23 29 | rabeqbidv | |
31 | 12 30 | eqtrd | |