Metamath Proof Explorer


Theorem quoremnn0ALT

Description: Alternate proof of quoremnn0 not using quoremz . TODO - Keep either quoremnn0ALT (if we don't keep quoremz ) or quoremnn0 ? (Contributed by NM, 14-Aug-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses quorem.1 Q=AB
quorem.2 R=ABQ
Assertion quoremnn0ALT A0BQ0R0R<BA=BQ+R

Proof

Step Hyp Ref Expression
1 quorem.1 Q=AB
2 quorem.2 R=ABQ
3 fldivnn0 A0BAB0
4 1 3 eqeltrid A0BQ0
5 nnnn0 BB0
6 5 adantl A0BB0
7 6 4 nn0mulcld A0BBQ0
8 simpl A0BA0
9 4 nn0cnd A0BQ
10 nncn BB
11 10 adantl A0BB
12 nnne0 BB0
13 12 adantl A0BB0
14 9 11 13 divcan3d A0BBQB=Q
15 nn0nndivcl A0BAB
16 flle ABABAB
17 15 16 syl A0BABAB
18 1 17 eqbrtrid A0BQAB
19 14 18 eqbrtrd A0BBQBAB
20 7 nn0red A0BBQ
21 nn0re A0A
22 21 adantr A0BA
23 nnre BB
24 23 adantl A0BB
25 nngt0 B0<B
26 25 adantl A0B0<B
27 lediv1 BQAB0<BBQABQBAB
28 20 22 24 26 27 syl112anc A0BBQABQBAB
29 19 28 mpbird A0BBQA
30 nn0sub2 BQ0A0BQAABQ0
31 7 8 29 30 syl3anc A0BABQ0
32 2 31 eqeltrid A0BR0
33 1 oveq2i ABQ=ABAB
34 fraclt1 ABABAB<1
35 15 34 syl A0BABAB<1
36 33 35 eqbrtrid A0BABQ<1
37 2 oveq1i RB=ABQB
38 nn0cn A0A
39 38 adantr A0BA
40 7 nn0cnd A0BBQ
41 10 12 jca BBB0
42 41 adantl A0BBB0
43 divsubdir ABQBB0ABQB=ABBQB
44 39 40 42 43 syl3anc A0BABQB=ABBQB
45 14 oveq2d A0BABBQB=ABQ
46 44 45 eqtrd A0BABQB=ABQ
47 37 46 eqtrid A0BRB=ABQ
48 10 12 dividd BBB=1
49 48 adantl A0BBB=1
50 36 47 49 3brtr4d A0BRB<BB
51 32 nn0red A0BR
52 ltdiv1 RBB0<BR<BRB<BB
53 51 24 24 26 52 syl112anc A0BR<BRB<BB
54 50 53 mpbird A0BR<B
55 2 oveq2i BQ+R=BQ+A-BQ
56 40 39 pncan3d A0BBQ+A-BQ=A
57 55 56 eqtr2id A0BA=BQ+R
58 54 57 jca A0BR<BA=BQ+R
59 4 32 58 jca31 A0BQ0R0R<BA=BQ+R