Description: Alternate proof of quoremnn0 not using quoremz . TODO - Keep either quoremnn0ALT (if we don't keep quoremz ) or quoremnn0 ? (Contributed by NM, 14-Aug-2008) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | quorem.1 | |
|
quorem.2 | |
||
Assertion | quoremnn0ALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quorem.1 | |
|
2 | quorem.2 | |
|
3 | fldivnn0 | |
|
4 | 1 3 | eqeltrid | |
5 | nnnn0 | |
|
6 | 5 | adantl | |
7 | 6 4 | nn0mulcld | |
8 | simpl | |
|
9 | 4 | nn0cnd | |
10 | nncn | |
|
11 | 10 | adantl | |
12 | nnne0 | |
|
13 | 12 | adantl | |
14 | 9 11 13 | divcan3d | |
15 | nn0nndivcl | |
|
16 | flle | |
|
17 | 15 16 | syl | |
18 | 1 17 | eqbrtrid | |
19 | 14 18 | eqbrtrd | |
20 | 7 | nn0red | |
21 | nn0re | |
|
22 | 21 | adantr | |
23 | nnre | |
|
24 | 23 | adantl | |
25 | nngt0 | |
|
26 | 25 | adantl | |
27 | lediv1 | |
|
28 | 20 22 24 26 27 | syl112anc | |
29 | 19 28 | mpbird | |
30 | nn0sub2 | |
|
31 | 7 8 29 30 | syl3anc | |
32 | 2 31 | eqeltrid | |
33 | 1 | oveq2i | |
34 | fraclt1 | |
|
35 | 15 34 | syl | |
36 | 33 35 | eqbrtrid | |
37 | 2 | oveq1i | |
38 | nn0cn | |
|
39 | 38 | adantr | |
40 | 7 | nn0cnd | |
41 | 10 12 | jca | |
42 | 41 | adantl | |
43 | divsubdir | |
|
44 | 39 40 42 43 | syl3anc | |
45 | 14 | oveq2d | |
46 | 44 45 | eqtrd | |
47 | 37 46 | eqtrid | |
48 | 10 12 | dividd | |
49 | 48 | adantl | |
50 | 36 47 49 | 3brtr4d | |
51 | 32 | nn0red | |
52 | ltdiv1 | |
|
53 | 51 24 24 26 52 | syl112anc | |
54 | 50 53 | mpbird | |
55 | 2 | oveq2i | |
56 | 40 39 | pncan3d | |
57 | 55 56 | eqtr2id | |
58 | 54 57 | jca | |
59 | 4 32 58 | jca31 | |