Metamath Proof Explorer


Theorem quotval

Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Hypothesis quotval.1 R=FfG×fq
Assertion quotval FPolySGPolySG0𝑝FquotG=ιqPoly|R=0𝑝degR<degG

Proof

Step Hyp Ref Expression
1 quotval.1 R=FfG×fq
2 plyssc PolySPoly
3 2 sseli FPolySFPoly
4 2 sseli GPolySGPoly
5 eldifsn GPoly0𝑝GPolyG0𝑝
6 oveq1 g=Gg×fq=G×fq
7 oveq12 f=Fg×fq=G×fqffg×fq=FfG×fq
8 6 7 sylan2 f=Fg=Gffg×fq=FfG×fq
9 8 1 eqtr4di f=Fg=Gffg×fq=R
10 9 sbceq1d f=Fg=G[˙ffg×fq/r]˙r=0𝑝degr<degg[˙R/r]˙r=0𝑝degr<degg
11 1 ovexi RV
12 eqeq1 r=Rr=0𝑝R=0𝑝
13 fveq2 r=Rdegr=degR
14 13 breq1d r=Rdegr<deggdegR<degg
15 12 14 orbi12d r=Rr=0𝑝degr<deggR=0𝑝degR<degg
16 11 15 sbcie [˙R/r]˙r=0𝑝degr<deggR=0𝑝degR<degg
17 simpr f=Fg=Gg=G
18 17 fveq2d f=Fg=Gdegg=degG
19 18 breq2d f=Fg=GdegR<deggdegR<degG
20 19 orbi2d f=Fg=GR=0𝑝degR<deggR=0𝑝degR<degG
21 16 20 bitrid f=Fg=G[˙R/r]˙r=0𝑝degr<deggR=0𝑝degR<degG
22 10 21 bitrd f=Fg=G[˙ffg×fq/r]˙r=0𝑝degr<deggR=0𝑝degR<degG
23 22 riotabidv f=Fg=GιqPoly|[˙ffg×fq/r]˙r=0𝑝degr<degg=ιqPoly|R=0𝑝degR<degG
24 df-quot quot=fPoly,gPoly0𝑝ιqPoly|[˙ffg×fq/r]˙r=0𝑝degr<degg
25 riotaex ιqPoly|R=0𝑝degR<degGV
26 23 24 25 ovmpoa FPolyGPoly0𝑝FquotG=ιqPoly|R=0𝑝degR<degG
27 5 26 sylan2br FPolyGPolyG0𝑝FquotG=ιqPoly|R=0𝑝degR<degG
28 27 3impb FPolyGPolyG0𝑝FquotG=ιqPoly|R=0𝑝degR<degG
29 4 28 syl3an2 FPolyGPolySG0𝑝FquotG=ιqPoly|R=0𝑝degR<degG
30 3 29 syl3an1 FPolySGPolySG0𝑝FquotG=ιqPoly|R=0𝑝degR<degG