Metamath Proof Explorer


Theorem radcnv0

Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G = x n 0 A n x n
radcnv.a φ A : 0
Assertion radcnv0 φ 0 r | seq 0 + G r dom

Proof

Step Hyp Ref Expression
1 pser.g G = x n 0 A n x n
2 radcnv.a φ A : 0
3 fveq2 r = 0 G r = G 0
4 3 seqeq3d r = 0 seq 0 + G r = seq 0 + G 0
5 4 eleq1d r = 0 seq 0 + G r dom seq 0 + G 0 dom
6 0red φ 0
7 nn0uz 0 = 0
8 0zd φ 0
9 snfi 0 Fin
10 9 a1i φ 0 Fin
11 0nn0 0 0
12 11 a1i φ 0 0
13 12 snssd φ 0 0
14 ifid if k 0 G 0 k G 0 k = G 0 k
15 0cnd φ 0
16 1 pserval2 0 k 0 G 0 k = A k 0 k
17 15 16 sylan φ k 0 G 0 k = A k 0 k
18 17 adantr φ k 0 ¬ k 0 G 0 k = A k 0 k
19 simpr φ k 0 k 0
20 elnn0 k 0 k k = 0
21 19 20 sylib φ k 0 k k = 0
22 21 ord φ k 0 ¬ k k = 0
23 velsn k 0 k = 0
24 22 23 syl6ibr φ k 0 ¬ k k 0
25 24 con1d φ k 0 ¬ k 0 k
26 25 imp φ k 0 ¬ k 0 k
27 26 0expd φ k 0 ¬ k 0 0 k = 0
28 27 oveq2d φ k 0 ¬ k 0 A k 0 k = A k 0
29 2 ffvelrnda φ k 0 A k
30 29 adantr φ k 0 ¬ k 0 A k
31 30 mul01d φ k 0 ¬ k 0 A k 0 = 0
32 18 28 31 3eqtrd φ k 0 ¬ k 0 G 0 k = 0
33 32 ifeq2da φ k 0 if k 0 G 0 k G 0 k = if k 0 G 0 k 0
34 14 33 syl5eqr φ k 0 G 0 k = if k 0 G 0 k 0
35 13 sselda φ k 0 k 0
36 1 2 15 psergf φ G 0 : 0
37 36 ffvelrnda φ k 0 G 0 k
38 35 37 syldan φ k 0 G 0 k
39 7 8 10 13 34 38 fsumcvg3 φ seq 0 + G 0 dom
40 5 6 39 elrabd φ 0 r | seq 0 + G r dom