Metamath Proof Explorer


Theorem radcnvle

Description: If X is a convergent point of the infinite series, then X is within the closed disk of radius R centered at zero. Or, by contraposition, the series diverges at any point strictly more than R from the origin. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G = x n 0 A n x n
radcnv.a φ A : 0
radcnv.r R = sup r | seq 0 + G r dom * <
radcnvle.x φ X
radcnvle.a φ seq 0 + G X dom
Assertion radcnvle φ X R

Proof

Step Hyp Ref Expression
1 pser.g G = x n 0 A n x n
2 radcnv.a φ A : 0
3 radcnv.r R = sup r | seq 0 + G r dom * <
4 radcnvle.x φ X
5 radcnvle.a φ seq 0 + G X dom
6 ressxr *
7 4 abscld φ X
8 6 7 sseldi φ X *
9 iccssxr 0 +∞ *
10 1 2 3 radcnvcl φ R 0 +∞
11 9 10 sseldi φ R *
12 simpr φ R < X R < X
13 11 adantr φ R < X R *
14 7 adantr φ R < X X
15 0xr 0 *
16 pnfxr +∞ *
17 elicc1 0 * +∞ * R 0 +∞ R * 0 R R +∞
18 15 16 17 mp2an R 0 +∞ R * 0 R R +∞
19 10 18 sylib φ R * 0 R R +∞
20 19 simp2d φ 0 R
21 ge0gtmnf R * 0 R −∞ < R
22 11 20 21 syl2anc φ −∞ < R
23 22 adantr φ R < X −∞ < R
24 8 adantr φ R < X X *
25 13 24 12 xrltled φ R < X R X
26 xrre R * X −∞ < R R X R
27 13 14 23 25 26 syl22anc φ R < X R
28 avglt1 R X R < X R < R + X 2
29 27 14 28 syl2anc φ R < X R < X R < R + X 2
30 12 29 mpbid φ R < X R < R + X 2
31 27 14 readdcld φ R < X R + X
32 31 rehalfcld φ R < X R + X 2
33 ssrab2 r | seq 0 + G r dom
34 33 6 sstri r | seq 0 + G r dom *
35 2 adantr φ R < X A : 0
36 32 recnd φ R < X R + X 2
37 4 adantr φ R < X X
38 0red φ R < X 0
39 20 adantr φ R < X 0 R
40 38 27 32 39 30 lelttrd φ R < X 0 < R + X 2
41 38 32 40 ltled φ R < X 0 R + X 2
42 32 41 absidd φ R < X R + X 2 = R + X 2
43 avglt2 R X R < X R + X 2 < X
44 27 14 43 syl2anc φ R < X R < X R + X 2 < X
45 12 44 mpbid φ R < X R + X 2 < X
46 42 45 eqbrtrd φ R < X R + X 2 < X
47 5 adantr φ R < X seq 0 + G X dom
48 1 35 36 37 46 47 radcnvlem3 φ R < X seq 0 + G R + X 2 dom
49 fveq2 y = R + X 2 G y = G R + X 2
50 49 seqeq3d y = R + X 2 seq 0 + G y = seq 0 + G R + X 2
51 50 eleq1d y = R + X 2 seq 0 + G y dom seq 0 + G R + X 2 dom
52 fveq2 r = y G r = G y
53 52 seqeq3d r = y seq 0 + G r = seq 0 + G y
54 53 eleq1d r = y seq 0 + G r dom seq 0 + G y dom
55 54 cbvrabv r | seq 0 + G r dom = y | seq 0 + G y dom
56 51 55 elrab2 R + X 2 r | seq 0 + G r dom R + X 2 seq 0 + G R + X 2 dom
57 32 48 56 sylanbrc φ R < X R + X 2 r | seq 0 + G r dom
58 supxrub r | seq 0 + G r dom * R + X 2 r | seq 0 + G r dom R + X 2 sup r | seq 0 + G r dom * <
59 34 57 58 sylancr φ R < X R + X 2 sup r | seq 0 + G r dom * <
60 59 3 breqtrrdi φ R < X R + X 2 R
61 32 27 60 lensymd φ R < X ¬ R < R + X 2
62 30 61 pm2.65da φ ¬ R < X
63 8 11 62 xrnltled φ X R