Metamath Proof Explorer


Theorem rami

Description: The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypotheses rami.c C=aV,i0b𝒫a|b=i
rami.m φM0
rami.r φRV
rami.f φF:R0
rami.x φMRamseyF0
rami.s φSW
rami.l φMRamseyFS
rami.g φG:SCMR
Assertion rami φcRx𝒫SFcxxCMG-1c

Proof

Step Hyp Ref Expression
1 rami.c C=aV,i0b𝒫a|b=i
2 rami.m φM0
3 rami.r φRV
4 rami.f φF:R0
5 rami.x φMRamseyF0
6 rami.s φSW
7 rami.l φMRamseyFS
8 rami.g φG:SCMR
9 cnveq f=Gf-1=G-1
10 9 imaeq1d f=Gf-1c=G-1c
11 10 sseq2d f=GxCMf-1cxCMG-1c
12 11 anbi2d f=GFcxxCMf-1cFcxxCMG-1c
13 12 2rexbidv f=GcRx𝒫SFcxxCMf-1ccRx𝒫SFcxxCMG-1c
14 eqid n0|snsfRsCMcRx𝒫sFcxxCMf-1c=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
15 1 14 ramtcl2 M0RVF:R0MRamseyF0n0|snsfRsCMcRx𝒫sFcxxCMf-1c
16 1 14 ramtcl M0RVF:R0MRamseyFn0|snsfRsCMcRx𝒫sFcxxCMf-1cn0|snsfRsCMcRx𝒫sFcxxCMf-1c
17 15 16 bitr4d M0RVF:R0MRamseyF0MRamseyFn0|snsfRsCMcRx𝒫sFcxxCMf-1c
18 2 3 4 17 syl3anc φMRamseyF0MRamseyFn0|snsfRsCMcRx𝒫sFcxxCMf-1c
19 5 18 mpbid φMRamseyFn0|snsfRsCMcRx𝒫sFcxxCMf-1c
20 breq1 n=MRamseyFnsMRamseyFs
21 20 imbi1d n=MRamseyFnsfRsCMcRx𝒫sFcxxCMf-1cMRamseyFsfRsCMcRx𝒫sFcxxCMf-1c
22 21 albidv n=MRamseyFsnsfRsCMcRx𝒫sFcxxCMf-1csMRamseyFsfRsCMcRx𝒫sFcxxCMf-1c
23 22 elrab MRamseyFn0|snsfRsCMcRx𝒫sFcxxCMf-1cMRamseyF0sMRamseyFsfRsCMcRx𝒫sFcxxCMf-1c
24 23 simprbi MRamseyFn0|snsfRsCMcRx𝒫sFcxxCMf-1csMRamseyFsfRsCMcRx𝒫sFcxxCMf-1c
25 19 24 syl φsMRamseyFsfRsCMcRx𝒫sFcxxCMf-1c
26 fveq2 s=Ss=S
27 26 breq2d s=SMRamseyFsMRamseyFS
28 oveq1 s=SsCM=SCM
29 28 oveq2d s=SRsCM=RSCM
30 pweq s=S𝒫s=𝒫S
31 30 rexeqdv s=Sx𝒫sFcxxCMf-1cx𝒫SFcxxCMf-1c
32 31 rexbidv s=ScRx𝒫sFcxxCMf-1ccRx𝒫SFcxxCMf-1c
33 29 32 raleqbidv s=SfRsCMcRx𝒫sFcxxCMf-1cfRSCMcRx𝒫SFcxxCMf-1c
34 27 33 imbi12d s=SMRamseyFsfRsCMcRx𝒫sFcxxCMf-1cMRamseyFSfRSCMcRx𝒫SFcxxCMf-1c
35 34 spcgv SWsMRamseyFsfRsCMcRx𝒫sFcxxCMf-1cMRamseyFSfRSCMcRx𝒫SFcxxCMf-1c
36 6 25 7 35 syl3c φfRSCMcRx𝒫SFcxxCMf-1c
37 ovex SCMV
38 elmapg RVSCMVGRSCMG:SCMR
39 3 37 38 sylancl φGRSCMG:SCMR
40 8 39 mpbird φGRSCM
41 13 36 40 rspcdva φcRx𝒫SFcxxCMG-1c