Metamath Proof Explorer


Theorem rankuni

Description: The rank of a union. Part of Exercise 4 of Kunen p. 107. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankuni rankA=rankA

Proof

Step Hyp Ref Expression
1 unieq x=Ax=A
2 1 fveq2d x=Arankx=rankA
3 fveq2 x=Arankx=rankA
4 3 unieqd x=Arankx=rankA
5 2 4 eqeq12d x=Arankx=rankxrankA=rankA
6 vex xV
7 6 rankuni2 rankx=zxrankz
8 fvex rankzV
9 8 dfiun2 zxrankz=y|zxy=rankz
10 7 9 eqtri rankx=y|zxy=rankz
11 df-rex zxy=rankzzzxy=rankz
12 6 rankel zxrankzrankx
13 12 anim1i zxy=rankzrankzrankxy=rankz
14 13 eximi zzxy=rankzzrankzrankxy=rankz
15 19.42v zyrankxy=rankzyrankxzy=rankz
16 eleq1 y=rankzyrankxrankzrankx
17 16 pm5.32ri yrankxy=rankzrankzrankxy=rankz
18 17 exbii zyrankxy=rankzzrankzrankxy=rankz
19 simpl yrankxzy=rankzyrankx
20 rankon rankxOn
21 20 oneli yrankxyOn
22 r1fnon R1FnOn
23 fndm R1FnOndomR1=On
24 22 23 ax-mp domR1=On
25 21 24 eleqtrrdi yrankxydomR1
26 rankr1id ydomR1rankR1y=y
27 25 26 sylib yrankxrankR1y=y
28 27 eqcomd yrankxy=rankR1y
29 fvex R1yV
30 fveq2 z=R1yrankz=rankR1y
31 30 eqeq2d z=R1yy=rankzy=rankR1y
32 29 31 spcev y=rankR1yzy=rankz
33 28 32 syl yrankxzy=rankz
34 33 ancli yrankxyrankxzy=rankz
35 19 34 impbii yrankxzy=rankzyrankx
36 15 18 35 3bitr3i zrankzrankxy=rankzyrankx
37 14 36 sylib zzxy=rankzyrankx
38 11 37 sylbi zxy=rankzyrankx
39 38 abssi y|zxy=rankzrankx
40 39 unissi y|zxy=rankzrankx
41 10 40 eqsstri rankxrankx
42 pwuni x𝒫x
43 vuniex xV
44 43 pwex 𝒫xV
45 44 rankss x𝒫xrankxrank𝒫x
46 42 45 ax-mp rankxrank𝒫x
47 43 rankpw rank𝒫x=sucrankx
48 46 47 sseqtri rankxsucrankx
49 48 unissi rankxsucrankx
50 rankon rankxOn
51 50 onunisuci sucrankx=rankx
52 49 51 sseqtri rankxrankx
53 41 52 eqssi rankx=rankx
54 5 53 vtoclg AVrankA=rankA
55 uniexb AVAV
56 fvprc ¬AVrankA=
57 55 56 sylnbi ¬AVrankA=
58 uni0 =
59 57 58 eqtr4di ¬AVrankA=
60 fvprc ¬AVrankA=
61 60 unieqd ¬AVrankA=
62 59 61 eqtr4d ¬AVrankA=rankA
63 54 62 pm2.61i rankA=rankA