Metamath Proof Explorer


Theorem rdivmuldivd

Description: Multiplication of two ratios. Theorem I.14 of Apostol p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses dvrdir.b B=BaseR
dvrdir.u U=UnitR
dvrdir.p +˙=+R
dvrdir.t ×˙=/rR
rdivmuldivd.p ·˙=R
rdivmuldivd.r φRCRing
rdivmuldivd.a φXB
rdivmuldivd.b φYU
rdivmuldivd.c φZB
rdivmuldivd.d φWU
Assertion rdivmuldivd φX×˙Y·˙Z×˙W=X·˙Z×˙Y·˙W

Proof

Step Hyp Ref Expression
1 dvrdir.b B=BaseR
2 dvrdir.u U=UnitR
3 dvrdir.p +˙=+R
4 dvrdir.t ×˙=/rR
5 rdivmuldivd.p ·˙=R
6 rdivmuldivd.r φRCRing
7 rdivmuldivd.a φXB
8 rdivmuldivd.b φYU
9 rdivmuldivd.c φZB
10 rdivmuldivd.d φWU
11 eqid invrR=invrR
12 1 5 2 11 4 dvrval XBYUX×˙Y=X·˙invrRY
13 12 oveq1d XBYUX×˙Y·˙Z×˙W=X·˙invrRY·˙Z×˙W
14 7 8 13 syl2anc φX×˙Y·˙Z×˙W=X·˙invrRY·˙Z×˙W
15 crngring RCRingRRing
16 6 15 syl φRRing
17 1 2 unitss UB
18 2 11 unitinvcl RRingYUinvrRYU
19 16 8 18 syl2anc φinvrRYU
20 17 19 sselid φinvrRYB
21 1 2 4 dvrcl RRingZBWUZ×˙WB
22 16 9 10 21 syl3anc φZ×˙WB
23 1 5 ringass RRingXBinvrRYBZ×˙WBX·˙invrRY·˙Z×˙W=X·˙invrRY·˙Z×˙W
24 16 7 20 22 23 syl13anc φX·˙invrRY·˙Z×˙W=X·˙invrRY·˙Z×˙W
25 1 5 crngcom RCRinginvrRYBZ×˙WBinvrRY·˙Z×˙W=Z×˙W·˙invrRY
26 6 20 22 25 syl3anc φinvrRY·˙Z×˙W=Z×˙W·˙invrRY
27 26 oveq2d φX·˙invrRY·˙Z×˙W=X·˙Z×˙W·˙invrRY
28 14 24 27 3eqtrd φX×˙Y·˙Z×˙W=X·˙Z×˙W·˙invrRY
29 eqid mulGrpR𝑠U=mulGrpR𝑠U
30 2 29 unitgrp RRingmulGrpR𝑠UGrp
31 16 30 syl φmulGrpR𝑠UGrp
32 2 29 unitgrpbas U=BasemulGrpR𝑠U
33 eqid +mulGrpR𝑠U=+mulGrpR𝑠U
34 2 29 11 invrfval invrR=invgmulGrpR𝑠U
35 32 33 34 grpinvadd mulGrpR𝑠UGrpYUWUinvrRY+mulGrpR𝑠UW=invrRW+mulGrpR𝑠UinvrRY
36 31 8 10 35 syl3anc φinvrRY+mulGrpR𝑠UW=invrRW+mulGrpR𝑠UinvrRY
37 eqid mulGrpR𝑠U=mulGrpR𝑠U
38 2 fvexi UV
39 eqid R𝑠U=R𝑠U
40 39 5 ressmulr UV·˙=R𝑠U
41 38 40 ax-mp ·˙=R𝑠U
42 37 41 mgpplusg ·˙=+mulGrpR𝑠U
43 eqid mulGrpR=mulGrpR
44 39 43 mgpress RRingUVmulGrpR𝑠U=mulGrpR𝑠U
45 16 38 44 sylancl φmulGrpR𝑠U=mulGrpR𝑠U
46 45 fveq2d φ+mulGrpR𝑠U=+mulGrpR𝑠U
47 42 46 eqtr4id φ·˙=+mulGrpR𝑠U
48 47 oveqd φY·˙W=Y+mulGrpR𝑠UW
49 48 fveq2d φinvrRY·˙W=invrRY+mulGrpR𝑠UW
50 47 oveqd φinvrRW·˙invrRY=invrRW+mulGrpR𝑠UinvrRY
51 36 49 50 3eqtr4d φinvrRY·˙W=invrRW·˙invrRY
52 51 oveq2d φX·˙Z·˙invrRY·˙W=X·˙Z·˙invrRW·˙invrRY
53 1 5 ringcl RRingXBZBX·˙ZB
54 16 7 9 53 syl3anc φX·˙ZB
55 2 5 unitmulcl RRingYUWUY·˙WU
56 16 8 10 55 syl3anc φY·˙WU
57 1 5 2 11 4 dvrval X·˙ZBY·˙WUX·˙Z×˙Y·˙W=X·˙Z·˙invrRY·˙W
58 54 56 57 syl2anc φX·˙Z×˙Y·˙W=X·˙Z·˙invrRY·˙W
59 2 11 unitinvcl RRingWUinvrRWU
60 16 10 59 syl2anc φinvrRWU
61 17 60 sselid φinvrRWB
62 1 5 ringass RRingXBZBinvrRWBX·˙Z·˙invrRW=X·˙Z·˙invrRW
63 16 7 9 61 62 syl13anc φX·˙Z·˙invrRW=X·˙Z·˙invrRW
64 1 5 2 11 4 dvrval ZBWUZ×˙W=Z·˙invrRW
65 9 10 64 syl2anc φZ×˙W=Z·˙invrRW
66 65 oveq2d φX·˙Z×˙W=X·˙Z·˙invrRW
67 63 66 eqtr4d φX·˙Z·˙invrRW=X·˙Z×˙W
68 67 oveq1d φX·˙Z·˙invrRW·˙invrRY=X·˙Z×˙W·˙invrRY
69 1 5 ringass RRingX·˙ZBinvrRWBinvrRYBX·˙Z·˙invrRW·˙invrRY=X·˙Z·˙invrRW·˙invrRY
70 16 54 61 20 69 syl13anc φX·˙Z·˙invrRW·˙invrRY=X·˙Z·˙invrRW·˙invrRY
71 1 5 ringass RRingXBZ×˙WBinvrRYBX·˙Z×˙W·˙invrRY=X·˙Z×˙W·˙invrRY
72 16 7 22 20 71 syl13anc φX·˙Z×˙W·˙invrRY=X·˙Z×˙W·˙invrRY
73 68 70 72 3eqtr3rd φX·˙Z×˙W·˙invrRY=X·˙Z·˙invrRW·˙invrRY
74 52 58 73 3eqtr4rd φX·˙Z×˙W·˙invrRY=X·˙Z×˙Y·˙W
75 28 74 eqtrd φX×˙Y·˙Z×˙W=X·˙Z×˙Y·˙W