Description: Lemma for regr1 . (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kqval.2 | |
|
regr1lem.2 | |
||
regr1lem.3 | |
||
regr1lem.4 | |
||
regr1lem.5 | |
||
regr1lem.6 | |
||
regr1lem.7 | |
||
Assertion | regr1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | |
|
2 | regr1lem.2 | |
|
3 | regr1lem.3 | |
|
4 | regr1lem.4 | |
|
5 | regr1lem.5 | |
|
6 | regr1lem.6 | |
|
7 | regr1lem.7 | |
|
8 | 3 | adantr | |
9 | 6 | adantr | |
10 | simpr | |
|
11 | regsep | |
|
12 | 8 9 10 11 | syl3anc | |
13 | 7 | ad2antrr | |
14 | 2 | ad3antrrr | |
15 | simplrl | |
|
16 | 1 | kqopn | |
17 | 14 15 16 | syl2anc | |
18 | toponuni | |
|
19 | 14 18 | syl | |
20 | 19 | difeq1d | |
21 | topontop | |
|
22 | 14 21 | syl | |
23 | elssuni | |
|
24 | 15 23 | syl | |
25 | eqid | |
|
26 | 25 | clscld | |
27 | 22 24 26 | syl2anc | |
28 | 25 | cldopn | |
29 | 27 28 | syl | |
30 | 20 29 | eqeltrd | |
31 | 1 | kqopn | |
32 | 14 30 31 | syl2anc | |
33 | simprrl | |
|
34 | 33 | adantr | |
35 | 4 | ad3antrrr | |
36 | 1 | kqfvima | |
37 | 14 15 35 36 | syl3anc | |
38 | 34 37 | mpbid | |
39 | 5 | ad3antrrr | |
40 | simprrr | |
|
41 | 40 | sseld | |
42 | 41 | con3dimp | |
43 | 39 42 | eldifd | |
44 | 1 | kqfvima | |
45 | 14 30 39 44 | syl3anc | |
46 | 43 45 | mpbid | |
47 | 25 | sscls | |
48 | 22 24 47 | syl2anc | |
49 | 48 | sscond | |
50 | imass2 | |
|
51 | sslin | |
|
52 | 49 50 51 | 3syl | |
53 | 1 | kqdisj | |
54 | 14 15 53 | syl2anc | |
55 | sseq0 | |
|
56 | 52 54 55 | syl2anc | |
57 | eleq2 | |
|
58 | ineq1 | |
|
59 | 58 | eqeq1d | |
60 | 57 59 | 3anbi13d | |
61 | eleq2 | |
|
62 | ineq2 | |
|
63 | 62 | eqeq1d | |
64 | 61 63 | 3anbi23d | |
65 | 60 64 | rspc2ev | |
66 | 17 32 38 46 56 65 | syl113anc | |
67 | 66 | ex | |
68 | 13 67 | mt3d | |
69 | 12 68 | rexlimddv | |
70 | 69 | ex | |