| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressply.1 |  | 
						
							| 2 |  | ressply.2 |  | 
						
							| 3 |  | ressply.3 |  | 
						
							| 4 |  | ressply.4 |  | 
						
							| 5 |  | ressply.5 |  | 
						
							| 6 |  | ressply1.1 |  | 
						
							| 7 |  | ressply1invg.1 |  | 
						
							| 8 | 1 2 3 4 5 6 | ressply1bas |  | 
						
							| 9 | 1 2 3 4 5 6 | ressply1add |  | 
						
							| 10 | 9 | anassrs |  | 
						
							| 11 | 7 10 | mpidan |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 2 3 4 5 12 | ressply10g |  | 
						
							| 14 | 1 2 3 4 | subrgply1 |  | 
						
							| 15 |  | subrgrcl |  | 
						
							| 16 |  | ringmnd |  | 
						
							| 17 | 5 14 15 16 | 4syl |  | 
						
							| 18 |  | subrgsubg |  | 
						
							| 19 | 12 | subg0cl |  | 
						
							| 20 | 5 14 18 19 | 4syl |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 1 2 3 4 5 21 22 23 | ressply1bas2 |  | 
						
							| 25 |  | inss2 |  | 
						
							| 26 | 24 25 | eqsstrdi |  | 
						
							| 27 | 6 23 12 | ress0g |  | 
						
							| 28 | 17 20 26 27 | syl3anc |  | 
						
							| 29 | 13 28 | eqtr3d |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 11 30 | eqeq12d |  | 
						
							| 32 | 8 31 | riotaeqbidva |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 4 33 34 35 | grpinvval |  | 
						
							| 37 | 7 36 | syl |  | 
						
							| 38 | 7 8 | eleqtrd |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 39 40 41 42 | grpinvval |  | 
						
							| 44 | 38 43 | syl |  | 
						
							| 45 | 32 37 44 | 3eqtr4d |  |