Metamath Proof Explorer


Theorem ressply1invg

Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025)

Ref Expression
Hypotheses ressply.1 S=Poly1R
ressply.2 H=R𝑠T
ressply.3 U=Poly1H
ressply.4 B=BaseU
ressply.5 φTSubRingR
ressply1.1 P=S𝑠B
ressply1invg.1 φXB
Assertion ressply1invg φinvgUX=invgPX

Proof

Step Hyp Ref Expression
1 ressply.1 S=Poly1R
2 ressply.2 H=R𝑠T
3 ressply.3 U=Poly1H
4 ressply.4 B=BaseU
5 ressply.5 φTSubRingR
6 ressply1.1 P=S𝑠B
7 ressply1invg.1 φXB
8 1 2 3 4 5 6 ressply1bas φB=BaseP
9 1 2 3 4 5 6 ressply1add φyBXBy+UX=y+PX
10 9 anassrs φyBXBy+UX=y+PX
11 7 10 mpidan φyBy+UX=y+PX
12 eqid 0S=0S
13 1 2 3 4 5 12 ressply10g φ0S=0U
14 1 2 3 4 subrgply1 TSubRingRBSubRingS
15 5 14 syl φBSubRingS
16 subrgrcl BSubRingSSRing
17 ringmnd SRingSMnd
18 15 16 17 3syl φSMnd
19 subrgsubg BSubRingSBSubGrpS
20 12 subg0cl BSubGrpS0SB
21 15 19 20 3syl φ0SB
22 eqid PwSer1H=PwSer1H
23 eqid BasePwSer1H=BasePwSer1H
24 eqid BaseS=BaseS
25 1 2 3 4 5 22 23 24 ressply1bas2 φB=BasePwSer1HBaseS
26 inss2 BasePwSer1HBaseSBaseS
27 25 26 eqsstrdi φBBaseS
28 6 24 12 ress0g SMnd0SBBBaseS0S=0P
29 18 21 27 28 syl3anc φ0S=0P
30 13 29 eqtr3d φ0U=0P
31 30 adantr φyB0U=0P
32 11 31 eqeq12d φyBy+UX=0Uy+PX=0P
33 8 32 riotaeqbidva φιyB|y+UX=0U=ιyBaseP|y+PX=0P
34 eqid +U=+U
35 eqid 0U=0U
36 eqid invgU=invgU
37 4 34 35 36 grpinvval XBinvgUX=ιyB|y+UX=0U
38 7 37 syl φinvgUX=ιyB|y+UX=0U
39 7 8 eleqtrd φXBaseP
40 eqid BaseP=BaseP
41 eqid +P=+P
42 eqid 0P=0P
43 eqid invgP=invgP
44 40 41 42 43 grpinvval XBasePinvgPX=ιyBaseP|y+PX=0P
45 39 44 syl φinvgPX=ιyBaseP|y+PX=0P
46 33 38 45 3eqtr4d φinvgUX=invgPX