Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressply.1 | |
|
ressply.2 | |
||
ressply.3 | |
||
ressply.4 | |
||
ressply.5 | |
||
ressply1.1 | |
||
ressply1invg.1 | |
||
Assertion | ressply1invg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressply.1 | |
|
2 | ressply.2 | |
|
3 | ressply.3 | |
|
4 | ressply.4 | |
|
5 | ressply.5 | |
|
6 | ressply1.1 | |
|
7 | ressply1invg.1 | |
|
8 | 1 2 3 4 5 6 | ressply1bas | |
9 | 1 2 3 4 5 6 | ressply1add | |
10 | 9 | anassrs | |
11 | 7 10 | mpidan | |
12 | eqid | |
|
13 | 1 2 3 4 5 12 | ressply10g | |
14 | 1 2 3 4 | subrgply1 | |
15 | 5 14 | syl | |
16 | subrgrcl | |
|
17 | ringmnd | |
|
18 | 15 16 17 | 3syl | |
19 | subrgsubg | |
|
20 | 12 | subg0cl | |
21 | 15 19 20 | 3syl | |
22 | eqid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | 1 2 3 4 5 22 23 24 | ressply1bas2 | |
26 | inss2 | |
|
27 | 25 26 | eqsstrdi | |
28 | 6 24 12 | ress0g | |
29 | 18 21 27 28 | syl3anc | |
30 | 13 29 | eqtr3d | |
31 | 30 | adantr | |
32 | 11 31 | eqeq12d | |
33 | 8 32 | riotaeqbidva | |
34 | eqid | |
|
35 | eqid | |
|
36 | eqid | |
|
37 | 4 34 35 36 | grpinvval | |
38 | 7 37 | syl | |
39 | 7 8 | eleqtrd | |
40 | eqid | |
|
41 | eqid | |
|
42 | eqid | |
|
43 | eqid | |
|
44 | 40 41 42 43 | grpinvval | |
45 | 39 44 | syl | |
46 | 33 38 45 | 3eqtr4d | |