Metamath Proof Explorer


Theorem ressprdsds

Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses ressprdsds.y φ Y = S 𝑠 x I R
ressprdsds.h φ H = T 𝑠 x I R 𝑠 A
ressprdsds.b B = Base H
ressprdsds.d D = dist Y
ressprdsds.e E = dist H
ressprdsds.s φ S U
ressprdsds.t φ T V
ressprdsds.i φ I W
ressprdsds.r φ x I R X
ressprdsds.a φ x I A Z
Assertion ressprdsds φ E = D B × B

Proof

Step Hyp Ref Expression
1 ressprdsds.y φ Y = S 𝑠 x I R
2 ressprdsds.h φ H = T 𝑠 x I R 𝑠 A
3 ressprdsds.b B = Base H
4 ressprdsds.d D = dist Y
5 ressprdsds.e E = dist H
6 ressprdsds.s φ S U
7 ressprdsds.t φ T V
8 ressprdsds.i φ I W
9 ressprdsds.r φ x I R X
10 ressprdsds.a φ x I A Z
11 ovres f B g B f D B × B g = f D g
12 11 adantl φ f B g B f D B × B g = f D g
13 eqid R 𝑠 A = R 𝑠 A
14 eqid dist R = dist R
15 13 14 ressds A Z dist R = dist R 𝑠 A
16 10 15 syl φ x I dist R = dist R 𝑠 A
17 16 oveqd φ x I f x dist R g x = f x dist R 𝑠 A g x
18 17 mpteq2dva φ x I f x dist R g x = x I f x dist R 𝑠 A g x
19 18 adantr φ f B g B x I f x dist R g x = x I f x dist R 𝑠 A g x
20 19 rneqd φ f B g B ran x I f x dist R g x = ran x I f x dist R 𝑠 A g x
21 20 uneq1d φ f B g B ran x I f x dist R g x 0 = ran x I f x dist R 𝑠 A g x 0
22 21 supeq1d φ f B g B sup ran x I f x dist R g x 0 * < = sup ran x I f x dist R 𝑠 A g x 0 * <
23 eqid S 𝑠 x I R = S 𝑠 x I R
24 eqid Base S 𝑠 x I R = Base S 𝑠 x I R
25 6 adantr φ f B g B S U
26 8 adantr φ f B g B I W
27 9 ralrimiva φ x I R X
28 27 adantr φ f B g B x I R X
29 eqid Base R = Base R
30 13 29 ressbasss Base R 𝑠 A Base R
31 30 a1i φ x I Base R 𝑠 A Base R
32 31 ralrimiva φ x I Base R 𝑠 A Base R
33 ss2ixp x I Base R 𝑠 A Base R x I Base R 𝑠 A x I Base R
34 32 33 syl φ x I Base R 𝑠 A x I Base R
35 eqid T 𝑠 x I R 𝑠 A = T 𝑠 x I R 𝑠 A
36 eqid Base T 𝑠 x I R 𝑠 A = Base T 𝑠 x I R 𝑠 A
37 ovex R 𝑠 A V
38 37 rgenw x I R 𝑠 A V
39 38 a1i φ x I R 𝑠 A V
40 eqid Base R 𝑠 A = Base R 𝑠 A
41 35 36 7 8 39 40 prdsbas3 φ Base T 𝑠 x I R 𝑠 A = x I Base R 𝑠 A
42 23 24 6 8 27 29 prdsbas3 φ Base S 𝑠 x I R = x I Base R
43 34 41 42 3sstr4d φ Base T 𝑠 x I R 𝑠 A Base S 𝑠 x I R
44 2 fveq2d φ Base H = Base T 𝑠 x I R 𝑠 A
45 3 44 syl5eq φ B = Base T 𝑠 x I R 𝑠 A
46 1 fveq2d φ Base Y = Base S 𝑠 x I R
47 43 45 46 3sstr4d φ B Base Y
48 47 adantr φ f B g B B Base Y
49 46 adantr φ f B g B Base Y = Base S 𝑠 x I R
50 48 49 sseqtrd φ f B g B B Base S 𝑠 x I R
51 simprl φ f B g B f B
52 50 51 sseldd φ f B g B f Base S 𝑠 x I R
53 simprr φ f B g B g B
54 50 53 sseldd φ f B g B g Base S 𝑠 x I R
55 eqid dist S 𝑠 x I R = dist S 𝑠 x I R
56 23 24 25 26 28 52 54 14 55 prdsdsval2 φ f B g B f dist S 𝑠 x I R g = sup ran x I f x dist R g x 0 * <
57 7 adantr φ f B g B T V
58 38 a1i φ f B g B x I R 𝑠 A V
59 45 adantr φ f B g B B = Base T 𝑠 x I R 𝑠 A
60 51 59 eleqtrd φ f B g B f Base T 𝑠 x I R 𝑠 A
61 53 59 eleqtrd φ f B g B g Base T 𝑠 x I R 𝑠 A
62 eqid dist R 𝑠 A = dist R 𝑠 A
63 eqid dist T 𝑠 x I R 𝑠 A = dist T 𝑠 x I R 𝑠 A
64 35 36 57 26 58 60 61 62 63 prdsdsval2 φ f B g B f dist T 𝑠 x I R 𝑠 A g = sup ran x I f x dist R 𝑠 A g x 0 * <
65 22 56 64 3eqtr4d φ f B g B f dist S 𝑠 x I R g = f dist T 𝑠 x I R 𝑠 A g
66 1 fveq2d φ dist Y = dist S 𝑠 x I R
67 4 66 syl5eq φ D = dist S 𝑠 x I R
68 67 oveqdr φ f B g B f D g = f dist S 𝑠 x I R g
69 2 fveq2d φ dist H = dist T 𝑠 x I R 𝑠 A
70 5 69 syl5eq φ E = dist T 𝑠 x I R 𝑠 A
71 70 oveqdr φ f B g B f E g = f dist T 𝑠 x I R 𝑠 A g
72 65 68 71 3eqtr4d φ f B g B f D g = f E g
73 12 72 eqtr2d φ f B g B f E g = f D B × B g
74 73 ralrimivva φ f B g B f E g = f D B × B g
75 8 mptexd φ x I R 𝑠 A V
76 eqid x I R 𝑠 A = x I R 𝑠 A
77 37 76 dmmpti dom x I R 𝑠 A = I
78 77 a1i φ dom x I R 𝑠 A = I
79 35 7 75 36 78 63 prdsdsfn φ dist T 𝑠 x I R 𝑠 A Fn Base T 𝑠 x I R 𝑠 A × Base T 𝑠 x I R 𝑠 A
80 45 sqxpeqd φ B × B = Base T 𝑠 x I R 𝑠 A × Base T 𝑠 x I R 𝑠 A
81 70 80 fneq12d φ E Fn B × B dist T 𝑠 x I R 𝑠 A Fn Base T 𝑠 x I R 𝑠 A × Base T 𝑠 x I R 𝑠 A
82 79 81 mpbird φ E Fn B × B
83 8 mptexd φ x I R V
84 dmmptg x I R X dom x I R = I
85 27 84 syl φ dom x I R = I
86 23 6 83 24 85 55 prdsdsfn φ dist S 𝑠 x I R Fn Base S 𝑠 x I R × Base S 𝑠 x I R
87 46 sqxpeqd φ Base Y × Base Y = Base S 𝑠 x I R × Base S 𝑠 x I R
88 67 87 fneq12d φ D Fn Base Y × Base Y dist S 𝑠 x I R Fn Base S 𝑠 x I R × Base S 𝑠 x I R
89 86 88 mpbird φ D Fn Base Y × Base Y
90 xpss12 B Base Y B Base Y B × B Base Y × Base Y
91 47 47 90 syl2anc φ B × B Base Y × Base Y
92 fnssres D Fn Base Y × Base Y B × B Base Y × Base Y D B × B Fn B × B
93 89 91 92 syl2anc φ D B × B Fn B × B
94 eqfnov2 E Fn B × B D B × B Fn B × B E = D B × B f B g B f E g = f D B × B g
95 82 93 94 syl2anc φ E = D B × B f B g B f E g = f D B × B g
96 74 95 mpbird φ E = D B × B