Metamath Proof Explorer


Theorem ressprdsds

Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses ressprdsds.y φY=S𝑠xIR
ressprdsds.h φH=T𝑠xIR𝑠A
ressprdsds.b B=BaseH
ressprdsds.d D=distY
ressprdsds.e E=distH
ressprdsds.s φSU
ressprdsds.t φTV
ressprdsds.i φIW
ressprdsds.r φxIRX
ressprdsds.a φxIAZ
Assertion ressprdsds φE=DB×B

Proof

Step Hyp Ref Expression
1 ressprdsds.y φY=S𝑠xIR
2 ressprdsds.h φH=T𝑠xIR𝑠A
3 ressprdsds.b B=BaseH
4 ressprdsds.d D=distY
5 ressprdsds.e E=distH
6 ressprdsds.s φSU
7 ressprdsds.t φTV
8 ressprdsds.i φIW
9 ressprdsds.r φxIRX
10 ressprdsds.a φxIAZ
11 ovres fBgBfDB×Bg=fDg
12 11 adantl φfBgBfDB×Bg=fDg
13 eqid R𝑠A=R𝑠A
14 eqid distR=distR
15 13 14 ressds AZdistR=distR𝑠A
16 10 15 syl φxIdistR=distR𝑠A
17 16 oveqd φxIfxdistRgx=fxdistR𝑠Agx
18 17 mpteq2dva φxIfxdistRgx=xIfxdistR𝑠Agx
19 18 adantr φfBgBxIfxdistRgx=xIfxdistR𝑠Agx
20 19 rneqd φfBgBranxIfxdistRgx=ranxIfxdistR𝑠Agx
21 20 uneq1d φfBgBranxIfxdistRgx0=ranxIfxdistR𝑠Agx0
22 21 supeq1d φfBgBsupranxIfxdistRgx0*<=supranxIfxdistR𝑠Agx0*<
23 eqid S𝑠xIR=S𝑠xIR
24 eqid BaseS𝑠xIR=BaseS𝑠xIR
25 6 adantr φfBgBSU
26 8 adantr φfBgBIW
27 9 ralrimiva φxIRX
28 27 adantr φfBgBxIRX
29 eqid BaseR=BaseR
30 13 29 ressbasss BaseR𝑠ABaseR
31 30 a1i φxIBaseR𝑠ABaseR
32 31 ralrimiva φxIBaseR𝑠ABaseR
33 ss2ixp xIBaseR𝑠ABaseRxIBaseR𝑠AxIBaseR
34 32 33 syl φxIBaseR𝑠AxIBaseR
35 eqid T𝑠xIR𝑠A=T𝑠xIR𝑠A
36 eqid BaseT𝑠xIR𝑠A=BaseT𝑠xIR𝑠A
37 ovex R𝑠AV
38 37 rgenw xIR𝑠AV
39 38 a1i φxIR𝑠AV
40 eqid BaseR𝑠A=BaseR𝑠A
41 35 36 7 8 39 40 prdsbas3 φBaseT𝑠xIR𝑠A=xIBaseR𝑠A
42 23 24 6 8 27 29 prdsbas3 φBaseS𝑠xIR=xIBaseR
43 34 41 42 3sstr4d φBaseT𝑠xIR𝑠ABaseS𝑠xIR
44 2 fveq2d φBaseH=BaseT𝑠xIR𝑠A
45 3 44 eqtrid φB=BaseT𝑠xIR𝑠A
46 1 fveq2d φBaseY=BaseS𝑠xIR
47 43 45 46 3sstr4d φBBaseY
48 47 adantr φfBgBBBaseY
49 46 adantr φfBgBBaseY=BaseS𝑠xIR
50 48 49 sseqtrd φfBgBBBaseS𝑠xIR
51 simprl φfBgBfB
52 50 51 sseldd φfBgBfBaseS𝑠xIR
53 simprr φfBgBgB
54 50 53 sseldd φfBgBgBaseS𝑠xIR
55 eqid distS𝑠xIR=distS𝑠xIR
56 23 24 25 26 28 52 54 14 55 prdsdsval2 φfBgBfdistS𝑠xIRg=supranxIfxdistRgx0*<
57 7 adantr φfBgBTV
58 38 a1i φfBgBxIR𝑠AV
59 45 adantr φfBgBB=BaseT𝑠xIR𝑠A
60 51 59 eleqtrd φfBgBfBaseT𝑠xIR𝑠A
61 53 59 eleqtrd φfBgBgBaseT𝑠xIR𝑠A
62 eqid distR𝑠A=distR𝑠A
63 eqid distT𝑠xIR𝑠A=distT𝑠xIR𝑠A
64 35 36 57 26 58 60 61 62 63 prdsdsval2 φfBgBfdistT𝑠xIR𝑠Ag=supranxIfxdistR𝑠Agx0*<
65 22 56 64 3eqtr4d φfBgBfdistS𝑠xIRg=fdistT𝑠xIR𝑠Ag
66 1 fveq2d φdistY=distS𝑠xIR
67 4 66 eqtrid φD=distS𝑠xIR
68 67 oveqdr φfBgBfDg=fdistS𝑠xIRg
69 2 fveq2d φdistH=distT𝑠xIR𝑠A
70 5 69 eqtrid φE=distT𝑠xIR𝑠A
71 70 oveqdr φfBgBfEg=fdistT𝑠xIR𝑠Ag
72 65 68 71 3eqtr4d φfBgBfDg=fEg
73 12 72 eqtr2d φfBgBfEg=fDB×Bg
74 73 ralrimivva φfBgBfEg=fDB×Bg
75 8 mptexd φxIR𝑠AV
76 eqid xIR𝑠A=xIR𝑠A
77 37 76 dmmpti domxIR𝑠A=I
78 77 a1i φdomxIR𝑠A=I
79 35 7 75 36 78 63 prdsdsfn φdistT𝑠xIR𝑠AFnBaseT𝑠xIR𝑠A×BaseT𝑠xIR𝑠A
80 45 sqxpeqd φB×B=BaseT𝑠xIR𝑠A×BaseT𝑠xIR𝑠A
81 70 80 fneq12d φEFnB×BdistT𝑠xIR𝑠AFnBaseT𝑠xIR𝑠A×BaseT𝑠xIR𝑠A
82 79 81 mpbird φEFnB×B
83 8 mptexd φxIRV
84 dmmptg xIRXdomxIR=I
85 27 84 syl φdomxIR=I
86 23 6 83 24 85 55 prdsdsfn φdistS𝑠xIRFnBaseS𝑠xIR×BaseS𝑠xIR
87 46 sqxpeqd φBaseY×BaseY=BaseS𝑠xIR×BaseS𝑠xIR
88 67 87 fneq12d φDFnBaseY×BaseYdistS𝑠xIRFnBaseS𝑠xIR×BaseS𝑠xIR
89 86 88 mpbird φDFnBaseY×BaseY
90 xpss12 BBaseYBBaseYB×BBaseY×BaseY
91 47 47 90 syl2anc φB×BBaseY×BaseY
92 fnssres DFnBaseY×BaseYB×BBaseY×BaseYDB×BFnB×B
93 89 91 92 syl2anc φDB×BFnB×B
94 eqfnov2 EFnB×BDB×BFnB×BE=DB×BfBgBfEg=fDB×Bg
95 82 93 94 syl2anc φE=DB×BfBgBfEg=fDB×Bg
96 74 95 mpbird φE=DB×B