Metamath Proof Explorer


Theorem ressupprn

Description: The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024)

Ref Expression
Assertion ressupprn FunFFV0˙WranFsupp0˙F=ranF0˙

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 1 biimpi FunFFFndomF
3 2 3ad2ant1 FunFFV0˙WFFndomF
4 dmexg FVdomFV
5 4 3ad2ant2 FunFFV0˙WdomFV
6 simp3 FunFFV0˙W0˙W
7 elsuppfn FFndomFdomFV0˙Wxsupp0˙FxdomFFx0˙
8 3 5 6 7 syl3anc FunFFV0˙Wxsupp0˙FxdomFFx0˙
9 8 anbi1d FunFFV0˙Wxsupp0˙FFsupp0˙Fx=yxdomFFx0˙Fsupp0˙Fx=y
10 anass xdomFFx0˙Fsupp0˙Fx=yxdomFFx0˙Fsupp0˙Fx=y
11 10 a1i FunFFV0˙WxdomFFx0˙Fsupp0˙Fx=yxdomFFx0˙Fsupp0˙Fx=y
12 8 biimprd FunFFV0˙WxdomFFx0˙xsupp0˙F
13 12 impl FunFFV0˙WxdomFFx0˙xsupp0˙F
14 13 fvresd FunFFV0˙WxdomFFx0˙Fsupp0˙Fx=Fx
15 14 eqeq1d FunFFV0˙WxdomFFx0˙Fsupp0˙Fx=yFx=y
16 15 pm5.32da FunFFV0˙WxdomFFx0˙Fsupp0˙Fx=yFx0˙Fx=y
17 ancom Fx0˙Fx=yFx=yFx0˙
18 simpr FunFFV0˙WxdomFFx=yFx=y
19 18 neeq1d FunFFV0˙WxdomFFx=yFx0˙y0˙
20 19 pm5.32da FunFFV0˙WxdomFFx=yFx0˙Fx=yy0˙
21 17 20 bitrid FunFFV0˙WxdomFFx0˙Fx=yFx=yy0˙
22 16 21 bitrd FunFFV0˙WxdomFFx0˙Fsupp0˙Fx=yFx=yy0˙
23 22 pm5.32da FunFFV0˙WxdomFFx0˙Fsupp0˙Fx=yxdomFFx=yy0˙
24 9 11 23 3bitrd FunFFV0˙Wxsupp0˙FFsupp0˙Fx=yxdomFFx=yy0˙
25 24 rexbidv2 FunFFV0˙Wxsupp0˙FFsupp0˙Fx=yxdomFFx=yy0˙
26 suppssdm Fsupp0˙domF
27 fnssres FFndomFFsupp0˙domFFsupp0˙FFnsupp0˙F
28 3 26 27 sylancl FunFFV0˙WFsupp0˙FFnsupp0˙F
29 fvelrnb Fsupp0˙FFnsupp0˙FyranFsupp0˙Fxsupp0˙FFsupp0˙Fx=y
30 28 29 syl FunFFV0˙WyranFsupp0˙Fxsupp0˙FFsupp0˙Fx=y
31 fvelrnb FFndomFyranFxdomFFx=y
32 31 anbi1d FFndomFyranFy0˙xdomFFx=yy0˙
33 eldifsn yranF0˙yranFy0˙
34 r19.41v xdomFFx=yy0˙xdomFFx=yy0˙
35 32 33 34 3bitr4g FFndomFyranF0˙xdomFFx=yy0˙
36 3 35 syl FunFFV0˙WyranF0˙xdomFFx=yy0˙
37 25 30 36 3bitr4d FunFFV0˙WyranFsupp0˙FyranF0˙
38 37 eqrdv FunFFV0˙WranFsupp0˙F=ranF0˙