Metamath Proof Explorer


Theorem rgspnval

Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Hypotheses rgspnval.r φRRing
rgspnval.b φB=BaseR
rgspnval.ss φAB
rgspnval.n φN=RingSpanR
rgspnval.sp φU=NA
Assertion rgspnval φU=tSubRingR|At

Proof

Step Hyp Ref Expression
1 rgspnval.r φRRing
2 rgspnval.b φB=BaseR
3 rgspnval.ss φAB
4 rgspnval.n φN=RingSpanR
5 rgspnval.sp φU=NA
6 4 fveq1d φNA=RingSpanRA
7 elex RRingRV
8 fveq2 a=RBasea=BaseR
9 8 pweqd a=R𝒫Basea=𝒫BaseR
10 fveq2 a=RSubRinga=SubRingR
11 rabeq SubRinga=SubRingRtSubRinga|bt=tSubRingR|bt
12 10 11 syl a=RtSubRinga|bt=tSubRingR|bt
13 12 inteqd a=RtSubRinga|bt=tSubRingR|bt
14 9 13 mpteq12dv a=Rb𝒫BaseatSubRinga|bt=b𝒫BaseRtSubRingR|bt
15 df-rgspn RingSpan=aVb𝒫BaseatSubRinga|bt
16 fvex BaseRV
17 16 pwex 𝒫BaseRV
18 17 mptex b𝒫BaseRtSubRingR|btV
19 14 15 18 fvmpt RVRingSpanR=b𝒫BaseRtSubRingR|bt
20 1 7 19 3syl φRingSpanR=b𝒫BaseRtSubRingR|bt
21 20 fveq1d φRingSpanRA=b𝒫BaseRtSubRingR|btA
22 eqid b𝒫BaseRtSubRingR|bt=b𝒫BaseRtSubRingR|bt
23 sseq1 b=AbtAt
24 23 rabbidv b=AtSubRingR|bt=tSubRingR|At
25 24 inteqd b=AtSubRingR|bt=tSubRingR|At
26 3 2 sseqtrd φABaseR
27 16 elpw2 A𝒫BaseRABaseR
28 26 27 sylibr φA𝒫BaseR
29 eqid BaseR=BaseR
30 29 subrgid RRingBaseRSubRingR
31 1 30 syl φBaseRSubRingR
32 2 31 eqeltrd φBSubRingR
33 sseq2 t=BAtAB
34 33 rspcev BSubRingRABtSubRingRAt
35 32 3 34 syl2anc φtSubRingRAt
36 intexrab tSubRingRAttSubRingR|AtV
37 35 36 sylib φtSubRingR|AtV
38 22 25 28 37 fvmptd3 φb𝒫BaseRtSubRingR|btA=tSubRingR|At
39 21 38 eqtrd φRingSpanRA=tSubRingR|At
40 5 6 39 3eqtrd φU=tSubRingR|At