Metamath Proof Explorer


Theorem rhmpreimacn

Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of EGA, p. 83. Notice that the direction of the continuous map G is reverse: the original ring homomorphism F goes from R to S , but the continuous map G goes from B to A . This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024)

Ref Expression
Hypotheses rhmpreimacn.t No typesetting found for |- T = ( Spec ` R ) with typecode |-
rhmpreimacn.u No typesetting found for |- U = ( Spec ` S ) with typecode |-
rhmpreimacn.a No typesetting found for |- A = ( PrmIdeal ` R ) with typecode |-
rhmpreimacn.b No typesetting found for |- B = ( PrmIdeal ` S ) with typecode |-
rhmpreimacn.j J = TopOpen T
rhmpreimacn.k K = TopOpen U
rhmpreimacn.g G = i B F -1 i
rhmpreimacn.r φ R CRing
rhmpreimacn.s φ S CRing
rhmpreimacn.f φ F R RingHom S
rhmpreimacn.1 φ ran F = Base S
Assertion rhmpreimacn φ G K Cn J

Proof

Step Hyp Ref Expression
1 rhmpreimacn.t Could not format T = ( Spec ` R ) : No typesetting found for |- T = ( Spec ` R ) with typecode |-
2 rhmpreimacn.u Could not format U = ( Spec ` S ) : No typesetting found for |- U = ( Spec ` S ) with typecode |-
3 rhmpreimacn.a Could not format A = ( PrmIdeal ` R ) : No typesetting found for |- A = ( PrmIdeal ` R ) with typecode |-
4 rhmpreimacn.b Could not format B = ( PrmIdeal ` S ) : No typesetting found for |- B = ( PrmIdeal ` S ) with typecode |-
5 rhmpreimacn.j J = TopOpen T
6 rhmpreimacn.k K = TopOpen U
7 rhmpreimacn.g G = i B F -1 i
8 rhmpreimacn.r φ R CRing
9 rhmpreimacn.s φ S CRing
10 rhmpreimacn.f φ F R RingHom S
11 rhmpreimacn.1 φ ran F = Base S
12 2 6 4 zartopon S CRing K TopOn B
13 9 12 syl φ K TopOn B
14 1 5 3 zartopon R CRing J TopOn A
15 8 14 syl φ J TopOn A
16 9 adantr φ i B S CRing
17 10 adantr φ i B F R RingHom S
18 simpr φ i B i B
19 18 4 eleqtrdi Could not format ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) : No typesetting found for |- ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) with typecode |-
20 3 rhmpreimaprmidl Could not format ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) : No typesetting found for |- ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) with typecode |-
21 16 17 19 20 syl21anc φ i B F -1 i A
22 21 7 fmptd φ G : B A
23 4 fvexi B V
24 23 rabex k B | j k V
25 sseq1 l = j l k j k
26 25 rabbidv l = j k B | l k = k B | j k
27 26 cbvmptv l LIdeal S k B | l k = j LIdeal S k B | j k
28 24 27 fnmpti l LIdeal S k B | l k Fn LIdeal S
29 10 ad3antrrr φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x F R RingHom S
30 11 ad3antrrr φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x ran F = Base S
31 simplr φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x a LIdeal R
32 eqid Base S = Base S
33 eqid LIdeal R = LIdeal R
34 eqid LIdeal S = LIdeal S
35 32 33 34 rhmimaidl F R RingHom S ran F = Base S a LIdeal R F a LIdeal S
36 29 30 31 35 syl3anc φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x F a LIdeal S
37 fveqeq2 b = F a l LIdeal S k B | l k b = G -1 x l LIdeal S k B | l k F a = G -1 x
38 37 adantl φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x b = F a l LIdeal S k B | l k b = G -1 x l LIdeal S k B | l k F a = G -1 x
39 8 ad3antrrr φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x R CRing
40 9 ad3antrrr φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x S CRing
41 25 rabbidv l = j k A | l k = k A | j k
42 41 cbvmptv l LIdeal R k A | l k = j LIdeal R k A | j k
43 1 2 3 4 5 6 7 39 40 29 30 31 42 27 rhmpreimacnlem φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x l LIdeal S k B | l k F a = G -1 l LIdeal R k A | l k a
44 simpr φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x l LIdeal R k A | l k a = x
45 44 imaeq2d φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x G -1 l LIdeal R k A | l k a = G -1 x
46 43 45 eqtrd φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x l LIdeal S k B | l k F a = G -1 x
47 36 38 46 rspcedvd φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x b LIdeal S l LIdeal S k B | l k b = G -1 x
48 3 fvexi A V
49 48 rabex k A | j k V
50 49 42 fnmpti l LIdeal R k A | l k Fn LIdeal R
51 simpr φ x Clsd J x Clsd J
52 8 adantr φ x Clsd J R CRing
53 1 5 3 42 zartopn R CRing J TopOn A ran l LIdeal R k A | l k = Clsd J
54 53 simprd R CRing ran l LIdeal R k A | l k = Clsd J
55 52 54 syl φ x Clsd J ran l LIdeal R k A | l k = Clsd J
56 51 55 eleqtrrd φ x Clsd J x ran l LIdeal R k A | l k
57 fvelrnb l LIdeal R k A | l k Fn LIdeal R x ran l LIdeal R k A | l k a LIdeal R l LIdeal R k A | l k a = x
58 57 biimpa l LIdeal R k A | l k Fn LIdeal R x ran l LIdeal R k A | l k a LIdeal R l LIdeal R k A | l k a = x
59 50 56 58 sylancr φ x Clsd J a LIdeal R l LIdeal R k A | l k a = x
60 47 59 r19.29a φ x Clsd J b LIdeal S l LIdeal S k B | l k b = G -1 x
61 fvelrnb l LIdeal S k B | l k Fn LIdeal S G -1 x ran l LIdeal S k B | l k b LIdeal S l LIdeal S k B | l k b = G -1 x
62 61 biimpar l LIdeal S k B | l k Fn LIdeal S b LIdeal S l LIdeal S k B | l k b = G -1 x G -1 x ran l LIdeal S k B | l k
63 28 60 62 sylancr φ x Clsd J G -1 x ran l LIdeal S k B | l k
64 2 6 4 27 zartopn S CRing K TopOn B ran l LIdeal S k B | l k = Clsd K
65 64 simprd S CRing ran l LIdeal S k B | l k = Clsd K
66 9 65 syl φ ran l LIdeal S k B | l k = Clsd K
67 66 adantr φ x Clsd J ran l LIdeal S k B | l k = Clsd K
68 63 67 eleqtrd φ x Clsd J G -1 x Clsd K
69 68 ralrimiva φ x Clsd J G -1 x Clsd K
70 iscncl K TopOn B J TopOn A G K Cn J G : B A x Clsd J G -1 x Clsd K
71 70 biimpar K TopOn B J TopOn A G : B A x Clsd J G -1 x Clsd K G K Cn J
72 13 15 22 69 71 syl22anc φ G K Cn J