Metamath Proof Explorer


Theorem rhmpreimacn

Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of EGA, p. 83. Notice that the direction of the continuous map G is reverse: the original ring homomorphism F goes from R to S , but the continuous map G goes from B to A . This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024)

Ref Expression
Hypotheses rhmpreimacn.t No typesetting found for |- T = ( Spec ` R ) with typecode |-
rhmpreimacn.u No typesetting found for |- U = ( Spec ` S ) with typecode |-
rhmpreimacn.a No typesetting found for |- A = ( PrmIdeal ` R ) with typecode |-
rhmpreimacn.b No typesetting found for |- B = ( PrmIdeal ` S ) with typecode |-
rhmpreimacn.j J=TopOpenT
rhmpreimacn.k K=TopOpenU
rhmpreimacn.g G=iBF-1i
rhmpreimacn.r φRCRing
rhmpreimacn.s φSCRing
rhmpreimacn.f φFRRingHomS
rhmpreimacn.1 φranF=BaseS
Assertion rhmpreimacn φGKCnJ

Proof

Step Hyp Ref Expression
1 rhmpreimacn.t Could not format T = ( Spec ` R ) : No typesetting found for |- T = ( Spec ` R ) with typecode |-
2 rhmpreimacn.u Could not format U = ( Spec ` S ) : No typesetting found for |- U = ( Spec ` S ) with typecode |-
3 rhmpreimacn.a Could not format A = ( PrmIdeal ` R ) : No typesetting found for |- A = ( PrmIdeal ` R ) with typecode |-
4 rhmpreimacn.b Could not format B = ( PrmIdeal ` S ) : No typesetting found for |- B = ( PrmIdeal ` S ) with typecode |-
5 rhmpreimacn.j J=TopOpenT
6 rhmpreimacn.k K=TopOpenU
7 rhmpreimacn.g G=iBF-1i
8 rhmpreimacn.r φRCRing
9 rhmpreimacn.s φSCRing
10 rhmpreimacn.f φFRRingHomS
11 rhmpreimacn.1 φranF=BaseS
12 2 6 4 zartopon SCRingKTopOnB
13 9 12 syl φKTopOnB
14 1 5 3 zartopon RCRingJTopOnA
15 8 14 syl φJTopOnA
16 9 adantr φiBSCRing
17 10 adantr φiBFRRingHomS
18 simpr φiBiB
19 18 4 eleqtrdi Could not format ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) : No typesetting found for |- ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) with typecode |-
20 3 rhmpreimaprmidl Could not format ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) : No typesetting found for |- ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) with typecode |-
21 16 17 19 20 syl21anc φiBF-1iA
22 21 7 fmptd φG:BA
23 4 fvexi BV
24 23 rabex kB|jkV
25 sseq1 l=jlkjk
26 25 rabbidv l=jkB|lk=kB|jk
27 26 cbvmptv lLIdealSkB|lk=jLIdealSkB|jk
28 24 27 fnmpti lLIdealSkB|lkFnLIdealS
29 10 ad3antrrr φxClsdJaLIdealRlLIdealRkA|lka=xFRRingHomS
30 11 ad3antrrr φxClsdJaLIdealRlLIdealRkA|lka=xranF=BaseS
31 simplr φxClsdJaLIdealRlLIdealRkA|lka=xaLIdealR
32 eqid BaseS=BaseS
33 eqid LIdealR=LIdealR
34 eqid LIdealS=LIdealS
35 32 33 34 rhmimaidl FRRingHomSranF=BaseSaLIdealRFaLIdealS
36 29 30 31 35 syl3anc φxClsdJaLIdealRlLIdealRkA|lka=xFaLIdealS
37 fveqeq2 b=FalLIdealSkB|lkb=G-1xlLIdealSkB|lkFa=G-1x
38 37 adantl φxClsdJaLIdealRlLIdealRkA|lka=xb=FalLIdealSkB|lkb=G-1xlLIdealSkB|lkFa=G-1x
39 8 ad3antrrr φxClsdJaLIdealRlLIdealRkA|lka=xRCRing
40 9 ad3antrrr φxClsdJaLIdealRlLIdealRkA|lka=xSCRing
41 25 rabbidv l=jkA|lk=kA|jk
42 41 cbvmptv lLIdealRkA|lk=jLIdealRkA|jk
43 1 2 3 4 5 6 7 39 40 29 30 31 42 27 rhmpreimacnlem φxClsdJaLIdealRlLIdealRkA|lka=xlLIdealSkB|lkFa=G-1lLIdealRkA|lka
44 simpr φxClsdJaLIdealRlLIdealRkA|lka=xlLIdealRkA|lka=x
45 44 imaeq2d φxClsdJaLIdealRlLIdealRkA|lka=xG-1lLIdealRkA|lka=G-1x
46 43 45 eqtrd φxClsdJaLIdealRlLIdealRkA|lka=xlLIdealSkB|lkFa=G-1x
47 36 38 46 rspcedvd φxClsdJaLIdealRlLIdealRkA|lka=xbLIdealSlLIdealSkB|lkb=G-1x
48 3 fvexi AV
49 48 rabex kA|jkV
50 49 42 fnmpti lLIdealRkA|lkFnLIdealR
51 simpr φxClsdJxClsdJ
52 8 adantr φxClsdJRCRing
53 1 5 3 42 zartopn RCRingJTopOnAranlLIdealRkA|lk=ClsdJ
54 53 simprd RCRingranlLIdealRkA|lk=ClsdJ
55 52 54 syl φxClsdJranlLIdealRkA|lk=ClsdJ
56 51 55 eleqtrrd φxClsdJxranlLIdealRkA|lk
57 fvelrnb lLIdealRkA|lkFnLIdealRxranlLIdealRkA|lkaLIdealRlLIdealRkA|lka=x
58 57 biimpa lLIdealRkA|lkFnLIdealRxranlLIdealRkA|lkaLIdealRlLIdealRkA|lka=x
59 50 56 58 sylancr φxClsdJaLIdealRlLIdealRkA|lka=x
60 47 59 r19.29a φxClsdJbLIdealSlLIdealSkB|lkb=G-1x
61 fvelrnb lLIdealSkB|lkFnLIdealSG-1xranlLIdealSkB|lkbLIdealSlLIdealSkB|lkb=G-1x
62 61 biimpar lLIdealSkB|lkFnLIdealSbLIdealSlLIdealSkB|lkb=G-1xG-1xranlLIdealSkB|lk
63 28 60 62 sylancr φxClsdJG-1xranlLIdealSkB|lk
64 2 6 4 27 zartopn SCRingKTopOnBranlLIdealSkB|lk=ClsdK
65 64 simprd SCRingranlLIdealSkB|lk=ClsdK
66 9 65 syl φranlLIdealSkB|lk=ClsdK
67 66 adantr φxClsdJranlLIdealSkB|lk=ClsdK
68 63 67 eleqtrd φxClsdJG-1xClsdK
69 68 ralrimiva φxClsdJG-1xClsdK
70 iscncl KTopOnBJTopOnAGKCnJG:BAxClsdJG-1xClsdK
71 70 biimpar KTopOnBJTopOnAG:BAxClsdJG-1xClsdKGKCnJ
72 13 15 22 69 71 syl22anc φGKCnJ