| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmpreimacn.t |
|
| 2 |
|
rhmpreimacn.u |
|
| 3 |
|
rhmpreimacn.a |
|
| 4 |
|
rhmpreimacn.b |
|
| 5 |
|
rhmpreimacn.j |
|
| 6 |
|
rhmpreimacn.k |
|
| 7 |
|
rhmpreimacn.g |
|
| 8 |
|
rhmpreimacn.r |
|
| 9 |
|
rhmpreimacn.s |
|
| 10 |
|
rhmpreimacn.f |
|
| 11 |
|
rhmpreimacn.1 |
|
| 12 |
2 6 4
|
zartopon |
|
| 13 |
9 12
|
syl |
|
| 14 |
1 5 3
|
zartopon |
|
| 15 |
8 14
|
syl |
|
| 16 |
9
|
adantr |
|
| 17 |
10
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
18 4
|
eleqtrdi |
|
| 20 |
3
|
rhmpreimaprmidl |
|
| 21 |
16 17 19 20
|
syl21anc |
|
| 22 |
21 7
|
fmptd |
|
| 23 |
4
|
fvexi |
|
| 24 |
23
|
rabex |
|
| 25 |
|
sseq1 |
|
| 26 |
25
|
rabbidv |
|
| 27 |
26
|
cbvmptv |
|
| 28 |
24 27
|
fnmpti |
|
| 29 |
10
|
ad3antrrr |
|
| 30 |
11
|
ad3antrrr |
|
| 31 |
|
simplr |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
32 33 34
|
rhmimaidl |
|
| 36 |
29 30 31 35
|
syl3anc |
|
| 37 |
|
fveqeq2 |
|
| 38 |
37
|
adantl |
|
| 39 |
8
|
ad3antrrr |
|
| 40 |
9
|
ad3antrrr |
|
| 41 |
25
|
rabbidv |
|
| 42 |
41
|
cbvmptv |
|
| 43 |
1 2 3 4 5 6 7 39 40 29 30 31 42 27
|
rhmpreimacnlem |
|
| 44 |
|
simpr |
|
| 45 |
44
|
imaeq2d |
|
| 46 |
43 45
|
eqtrd |
|
| 47 |
36 38 46
|
rspcedvd |
|
| 48 |
3
|
fvexi |
|
| 49 |
48
|
rabex |
|
| 50 |
49 42
|
fnmpti |
|
| 51 |
|
simpr |
|
| 52 |
8
|
adantr |
|
| 53 |
1 5 3 42
|
zartopn |
|
| 54 |
53
|
simprd |
|
| 55 |
52 54
|
syl |
|
| 56 |
51 55
|
eleqtrrd |
|
| 57 |
|
fvelrnb |
|
| 58 |
57
|
biimpa |
|
| 59 |
50 56 58
|
sylancr |
|
| 60 |
47 59
|
r19.29a |
|
| 61 |
|
fvelrnb |
|
| 62 |
61
|
biimpar |
|
| 63 |
28 60 62
|
sylancr |
|
| 64 |
2 6 4 27
|
zartopn |
|
| 65 |
64
|
simprd |
|
| 66 |
9 65
|
syl |
|
| 67 |
66
|
adantr |
|
| 68 |
63 67
|
eleqtrd |
|
| 69 |
68
|
ralrimiva |
|
| 70 |
|
iscncl |
|
| 71 |
70
|
biimpar |
|
| 72 |
13 15 22 69 71
|
syl22anc |
|