| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmqusnsg.0 |  | 
						
							| 2 |  | rhmqusnsg.f |  | 
						
							| 3 |  | rhmqusnsg.k |  | 
						
							| 4 |  | rhmqusnsg.q |  | 
						
							| 5 |  | rhmqusnsg.j |  | 
						
							| 6 |  | rhmqusnsg.g |  | 
						
							| 7 |  | rhmqusnsg.n |  | 
						
							| 8 |  | rhmqusnsg.1 |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 6 | crngringd |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | crng2idl |  | 
						
							| 17 | 6 16 | syl |  | 
						
							| 18 | 8 17 | eleqtrd |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 4 19 20 | qus1 |  | 
						
							| 22 | 14 18 21 | syl2anc |  | 
						
							| 23 | 22 | simpld |  | 
						
							| 24 |  | rhmrcl2 |  | 
						
							| 25 | 2 24 | syl |  | 
						
							| 26 |  | rhmghm |  | 
						
							| 27 | 2 26 | syl |  | 
						
							| 28 |  | lidlnsg |  | 
						
							| 29 | 14 8 28 | syl2anc |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 20 | ringidcl |  | 
						
							| 32 | 14 31 | syl |  | 
						
							| 33 | 1 27 3 4 5 7 29 32 | ghmqusnsglem1 |  | 
						
							| 34 | 22 | simprd |  | 
						
							| 35 | 34 | fveq2d |  | 
						
							| 36 | 20 11 | rhm1 |  | 
						
							| 37 | 2 36 | syl |  | 
						
							| 38 | 33 35 37 | 3eqtr3d |  | 
						
							| 39 | 2 | ad6antr |  | 
						
							| 40 | 4 | a1i |  | 
						
							| 41 |  | eqidd |  | 
						
							| 42 |  | ovexd |  | 
						
							| 43 | 40 41 42 6 | qusbas |  | 
						
							| 44 |  | nsgsubg |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 30 45 | eqger |  | 
						
							| 47 | 29 44 46 | 3syl |  | 
						
							| 48 | 47 | qsss |  | 
						
							| 49 | 43 48 | eqsstrrd |  | 
						
							| 50 | 49 | sselda |  | 
						
							| 51 | 50 | elpwid |  | 
						
							| 52 | 51 | ad5antr |  | 
						
							| 53 |  | simp-4r |  | 
						
							| 54 | 52 53 | sseldd |  | 
						
							| 55 | 49 | sselda |  | 
						
							| 56 | 55 | elpwid |  | 
						
							| 57 | 56 | adantlr |  | 
						
							| 58 | 57 | ad4antr |  | 
						
							| 59 |  | simplr |  | 
						
							| 60 | 58 59 | sseldd |  | 
						
							| 61 |  | eqid |  | 
						
							| 62 | 30 61 13 | rhmmul |  | 
						
							| 63 | 39 54 60 62 | syl3anc |  | 
						
							| 64 | 47 | ad6antr |  | 
						
							| 65 |  | simp-6r |  | 
						
							| 66 | 43 | ad6antr |  | 
						
							| 67 | 65 66 | eleqtrrd |  | 
						
							| 68 |  | qsel |  | 
						
							| 69 | 64 67 53 68 | syl3anc |  | 
						
							| 70 |  | simp-5r |  | 
						
							| 71 | 70 66 | eleqtrrd |  | 
						
							| 72 |  | qsel |  | 
						
							| 73 | 64 71 59 72 | syl3anc |  | 
						
							| 74 | 69 73 | oveq12d |  | 
						
							| 75 | 6 | ad6antr |  | 
						
							| 76 | 8 | ad6antr |  | 
						
							| 77 | 4 30 61 12 75 76 54 60 | qusmulcrng |  | 
						
							| 78 | 74 77 | eqtr2d |  | 
						
							| 79 | 78 | fveq2d |  | 
						
							| 80 | 39 26 | syl |  | 
						
							| 81 | 7 | ad6antr |  | 
						
							| 82 | 29 | ad6antr |  | 
						
							| 83 |  | rhmrcl1 |  | 
						
							| 84 | 39 83 | syl |  | 
						
							| 85 | 30 61 84 54 60 | ringcld |  | 
						
							| 86 | 1 80 3 4 5 81 82 85 | ghmqusnsglem1 |  | 
						
							| 87 | 79 86 | eqtr3d |  | 
						
							| 88 |  | simpllr |  | 
						
							| 89 |  | simpr |  | 
						
							| 90 | 88 89 | oveq12d |  | 
						
							| 91 | 63 87 90 | 3eqtr4d |  | 
						
							| 92 | 27 | ad4antr |  | 
						
							| 93 | 7 | ad4antr |  | 
						
							| 94 | 29 | ad4antr |  | 
						
							| 95 |  | simpllr |  | 
						
							| 96 | 1 92 3 4 5 93 94 95 | ghmqusnsglem2 |  | 
						
							| 97 | 91 96 | r19.29a |  | 
						
							| 98 | 27 | ad2antrr |  | 
						
							| 99 | 7 | ad2antrr |  | 
						
							| 100 | 29 | ad2antrr |  | 
						
							| 101 |  | simplr |  | 
						
							| 102 | 1 98 3 4 5 99 100 101 | ghmqusnsglem2 |  | 
						
							| 103 | 97 102 | r19.29a |  | 
						
							| 104 | 103 | anasss |  | 
						
							| 105 | 1 27 3 4 5 7 29 | ghmqusnsg |  | 
						
							| 106 | 9 10 11 12 13 23 25 38 104 105 | isrhm2d |  |