Metamath Proof Explorer


Theorem rhmsubcrngclem2

Description: Lemma 2 for rhmsubcrngc . (Contributed by AV, 12-Mar-2020)

Ref Expression
Hypotheses rhmsubcrngc.c C=RngCatU
rhmsubcrngc.u φUV
rhmsubcrngc.b φB=RingU
rhmsubcrngc.h φH=RingHomB×B
Assertion rhmsubcrngclem2 φxByBzBfxHygyHzgxycompCzfxHz

Proof

Step Hyp Ref Expression
1 rhmsubcrngc.c C=RngCatU
2 rhmsubcrngc.u φUV
3 rhmsubcrngc.b φB=RingU
4 rhmsubcrngc.h φH=RingHomB×B
5 simpl φxBφ
6 5 ad2antrr φxByBzBfxHygyHzφ
7 simpr φxByBzByBzB
8 7 adantr φxByBzBfxHygyHzyBzB
9 simprr φxByBzBfxHygyHzgyHz
10 4 rhmresel φyBzBgyHzgyRingHomz
11 6 8 9 10 syl3anc φxByBzBfxHygyHzgyRingHomz
12 simpr φxBxB
13 simpl yBzByB
14 12 13 anim12i φxByBzBxByB
15 14 adantr φxByBzBfxHygyHzxByB
16 simprl φxByBzBfxHygyHzfxHy
17 4 rhmresel φxByBfxHyfxRingHomy
18 6 15 16 17 syl3anc φxByBzBfxHygyHzfxRingHomy
19 rhmco gyRingHomzfxRingHomygfxRingHomz
20 11 18 19 syl2anc φxByBzBfxHygyHzgfxRingHomz
21 2 adantr φxBUV
22 21 ad2antrr φxByBzBfxHygyHzUV
23 eqid compC=compC
24 3 eleq2d φxBxRingU
25 elinel2 xRingUxU
26 24 25 syl6bi φxBxU
27 26 imp φxBxU
28 27 ad2antrr φxByBzBfxHygyHzxU
29 3 eleq2d φyByRingU
30 elinel2 yRingUyU
31 29 30 syl6bi φyByU
32 31 adantr φxByByU
33 32 com12 yBφxByU
34 33 adantr yBzBφxByU
35 34 impcom φxByBzByU
36 35 adantr φxByBzBfxHygyHzyU
37 3 eleq2d φzBzRingU
38 elinel2 zRingUzU
39 37 38 syl6bi φzBzU
40 39 adantr φxBzBzU
41 40 adantld φxByBzBzU
42 41 imp φxByBzBzU
43 42 adantr φxByBzBfxHygyHzzU
44 simprl yBφxBφ
45 44 adantr yBφxBfxHyφ
46 12 anim1i φxByBxByB
47 46 ancoms yBφxBxByB
48 47 adantr yBφxBfxHyxByB
49 simpr yBφxBfxHyfxHy
50 45 48 49 17 syl3anc yBφxBfxHyfxRingHomy
51 eqid Basex=Basex
52 eqid Basey=Basey
53 51 52 rhmf fxRingHomyf:BasexBasey
54 50 53 syl yBφxBfxHyf:BasexBasey
55 54 exp31 yBφxBfxHyf:BasexBasey
56 55 adantr yBzBφxBfxHyf:BasexBasey
57 56 impcom φxByBzBfxHyf:BasexBasey
58 57 com12 fxHyφxByBzBf:BasexBasey
59 58 adantr fxHygyHzφxByBzBf:BasexBasey
60 59 impcom φxByBzBfxHygyHzf:BasexBasey
61 10 3expa φyBzBgyHzgyRingHomz
62 eqid Basez=Basez
63 52 62 rhmf gyRingHomzg:BaseyBasez
64 61 63 syl φyBzBgyHzg:BaseyBasez
65 64 ex φyBzBgyHzg:BaseyBasez
66 65 adantlr φxByBzBgyHzg:BaseyBasez
67 66 adantld φxByBzBfxHygyHzg:BaseyBasez
68 67 imp φxByBzBfxHygyHzg:BaseyBasez
69 1 22 23 28 36 43 60 68 rngcco φxByBzBfxHygyHzgxycompCzf=gf
70 4 adantr φxBH=RingHomB×B
71 70 oveqdr φxByBzBxHz=xRingHomB×Bz
72 ovres xBzBxRingHomB×Bz=xRingHomz
73 72 ad2ant2l φxByBzBxRingHomB×Bz=xRingHomz
74 71 73 eqtrd φxByBzBxHz=xRingHomz
75 74 adantr φxByBzBfxHygyHzxHz=xRingHomz
76 20 69 75 3eltr4d φxByBzBfxHygyHzgxycompCzfxHz
77 76 ralrimivva φxByBzBfxHygyHzgxycompCzfxHz
78 77 ralrimivva φxByBzBfxHygyHzgxycompCzfxHz