Metamath Proof Explorer


Theorem ringlz

Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009)

Ref Expression
Hypotheses ringz.b B=BaseR
ringz.t ·˙=R
ringz.z 0˙=0R
Assertion ringlz RRingXB0˙·˙X=0˙

Proof

Step Hyp Ref Expression
1 ringz.b B=BaseR
2 ringz.t ·˙=R
3 ringz.z 0˙=0R
4 ringgrp RRingRGrp
5 1 3 grpidcl RGrp0˙B
6 eqid +R=+R
7 1 6 3 grplid RGrp0˙B0˙+R0˙=0˙
8 4 5 7 syl2anc2 RRing0˙+R0˙=0˙
9 8 adantr RRingXB0˙+R0˙=0˙
10 9 oveq1d RRingXB0˙+R0˙·˙X=0˙·˙X
11 4 5 syl RRing0˙B
12 11 adantr RRingXB0˙B
13 simpr RRingXBXB
14 12 12 13 3jca RRingXB0˙B0˙BXB
15 1 6 2 ringdir RRing0˙B0˙BXB0˙+R0˙·˙X=0˙·˙X+R0˙·˙X
16 14 15 syldan RRingXB0˙+R0˙·˙X=0˙·˙X+R0˙·˙X
17 4 adantr RRingXBRGrp
18 simpl RRingXBRRing
19 1 2 ringcl RRing0˙BXB0˙·˙XB
20 18 12 13 19 syl3anc RRingXB0˙·˙XB
21 1 6 3 grprid RGrp0˙·˙XB0˙·˙X+R0˙=0˙·˙X
22 21 eqcomd RGrp0˙·˙XB0˙·˙X=0˙·˙X+R0˙
23 17 20 22 syl2anc RRingXB0˙·˙X=0˙·˙X+R0˙
24 10 16 23 3eqtr3d RRingXB0˙·˙X+R0˙·˙X=0˙·˙X+R0˙
25 1 6 grplcan RGrp0˙·˙XB0˙B0˙·˙XB0˙·˙X+R0˙·˙X=0˙·˙X+R0˙0˙·˙X=0˙
26 17 20 12 20 25 syl13anc RRingXB0˙·˙X+R0˙·˙X=0˙·˙X+R0˙0˙·˙X=0˙
27 24 26 mpbid RRingXB0˙·˙X=0˙