Metamath Proof Explorer


Theorem rlimclim

Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlimclim.1 Z=M
rlimclim.2 φM
rlimclim.3 φF:Z
Assertion rlimclim φFAFA

Proof

Step Hyp Ref Expression
1 rlimclim.1 Z=M
2 rlimclim.2 φM
3 rlimclim.3 φF:Z
4 2 adantr φFAM
5 simpr φFAFA
6 fdm F:ZdomF=Z
7 eqimss2 domF=ZZdomF
8 3 6 7 3syl φZdomF
9 8 adantr φFAZdomF
10 1 4 5 9 rlimclim1 φFAFA
11 climcl FAA
12 11 adantl φFAA
13 2 ad2antrr φFAy+M
14 simpr φFAy+y+
15 eqidd φFAy+kZFk=Fk
16 simplr φFAy+FA
17 1 13 14 15 16 climi2 φFAy+zZkzFkA<y
18 uzssz M
19 1 18 eqsstri Z
20 zssre
21 19 20 sstri Z
22 fveq2 k=wFk=Fw
23 22 fvoveq1d k=wFkA=FwA
24 23 breq1d k=wFkA<yFwA<y
25 simplrr φFAy+zZkzFkA<ywZzwkzFkA<y
26 simplrl φFAy+zZkzFkA<ywZzwzZ
27 19 26 sselid φFAy+zZkzFkA<ywZzwz
28 simprl φFAy+zZkzFkA<ywZzwwZ
29 19 28 sselid φFAy+zZkzFkA<ywZzww
30 simprr φFAy+zZkzFkA<ywZzwzw
31 eluz2 wzzwzw
32 27 29 30 31 syl3anbrc φFAy+zZkzFkA<ywZzwwz
33 24 25 32 rspcdva φFAy+zZkzFkA<ywZzwFwA<y
34 33 expr φFAy+zZkzFkA<ywZzwFwA<y
35 34 ralrimiva φFAy+zZkzFkA<ywZzwFwA<y
36 35 expr φFAy+zZkzFkA<ywZzwFwA<y
37 36 reximdva φFAy+zZkzFkA<yzZwZzwFwA<y
38 ssrexv ZzZwZzwFwA<yzwZzwFwA<y
39 21 37 38 mpsylsyld φFAy+zZkzFkA<yzwZzwFwA<y
40 17 39 mpd φFAy+zwZzwFwA<y
41 40 ralrimiva φFAy+zwZzwFwA<y
42 3 adantr φFAF:Z
43 21 a1i φFAZ
44 eqidd φFAwZFw=Fw
45 42 43 44 rlim φFAFAAy+zwZzwFwA<y
46 12 41 45 mpbir2and φFAFA
47 10 46 impbida φFAFA