Metamath Proof Explorer


Theorem rlimdiv

Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of Gleason p. 168. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypotheses rlimadd.3 φxABV
rlimadd.4 φxACV
rlimadd.5 φxABD
rlimadd.6 φxACE
rlimdiv.7 φE0
rlimdiv.8 φxAC0
Assertion rlimdiv φxABCDE

Proof

Step Hyp Ref Expression
1 rlimadd.3 φxABV
2 rlimadd.4 φxACV
3 rlimadd.5 φxABD
4 rlimadd.6 φxACE
5 rlimdiv.7 φE0
6 rlimdiv.8 φxAC0
7 1 3 rlimmptrcl φxAB
8 2 4 rlimmptrcl φxAC
9 8 6 reccld φxA1C
10 eldifsn C0CC0
11 8 6 10 sylanbrc φxAC0
12 11 fmpttd φxAC:A0
13 rlimcl xACEE
14 4 13 syl φE
15 eldifsn E0EE0
16 14 5 15 sylanbrc φE0
17 eldifsn y0yy0
18 reccl yy01y
19 17 18 sylbi y01y
20 19 adantl φy01y
21 20 fmpttd φy01y:0
22 eqid if1Ez1EzE2=if1Ez1EzE2
23 22 reccn2 E0z+w+v0vE<w1v1E<z
24 16 23 sylan φz+w+v0vE<w1v1E<z
25 oveq2 y=v1y=1v
26 eqid y01y=y01y
27 ovex 1vV
28 25 26 27 fvmpt v0y01yv=1v
29 oveq2 y=E1y=1E
30 ovex 1EV
31 29 26 30 fvmpt E0y01yE=1E
32 16 31 syl φy01yE=1E
33 28 32 oveqan12rd φv0y01yvy01yE=1v1E
34 33 fveq2d φv0y01yvy01yE=1v1E
35 34 breq1d φv0y01yvy01yE<z1v1E<z
36 35 imbi2d φv0vE<wy01yvy01yE<zvE<w1v1E<z
37 36 ralbidva φv0vE<wy01yvy01yE<zv0vE<w1v1E<z
38 37 rexbidv φw+v0vE<wy01yvy01yE<zw+v0vE<w1v1E<z
39 38 biimpar φw+v0vE<w1v1E<zw+v0vE<wy01yvy01yE<z
40 24 39 syldan φz+w+v0vE<wy01yvy01yE<z
41 12 16 4 21 40 rlimcn1 φy01yxACy01yE
42 eqidd φxAC=xAC
43 eqidd φy01y=y01y
44 oveq2 y=C1y=1C
45 11 42 43 44 fmptco φy01yxAC=xA1C
46 41 45 32 3brtr3d φxA1C1E
47 7 9 3 46 rlimmul φxAB1CD1E
48 7 8 6 divrecd φxABC=B1C
49 48 mpteq2dva φxABC=xAB1C
50 rlimcl xABDD
51 3 50 syl φD
52 51 14 5 divrecd φDE=D1E
53 47 49 52 3brtr4d φxABCDE