Metamath Proof Explorer


Theorem rlmdim

Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023) Generalize to division rings. (Revised by SN, 22-Mar-2025)

Ref Expression
Hypothesis rlmdim.1 V=ringLModF
Assertion rlmdim FDivRingdimV=1

Proof

Step Hyp Ref Expression
1 rlmdim.1 V=ringLModF
2 rlmlvec FDivRingringLModFLVec
3 1 2 eqeltrid FDivRingVLVec
4 ssid BaseFBaseF
5 rlmval ringLModF=subringAlgFBaseF
6 1 5 eqtri V=subringAlgFBaseF
7 eqid BaseF=BaseF
8 6 7 sradrng FDivRingBaseFBaseFVDivRing
9 4 8 mpan2 FDivRingVDivRing
10 9 drngringd FDivRingVRing
11 eqid BaseV=BaseV
12 eqid 1V=1V
13 11 12 ringidcl VRing1VBaseV
14 10 13 syl FDivRing1VBaseV
15 eqid 0V=0V
16 15 12 drngunz VDivRing1V0V
17 9 16 syl FDivRing1V0V
18 11 15 lindssn VLVec1VBaseV1V0V1VLIndSV
19 3 14 17 18 syl3anc FDivRing1VLIndSV
20 drngring FDivRingFRing
21 1 fveq2i LSpanV=LSpanringLModF
22 rspval RSpanF=LSpanringLModF
23 21 22 eqtr4i LSpanV=RSpanF
24 eqid 1F=1F
25 23 7 24 rsp1 FRingLSpanV1F=BaseF
26 20 25 syl FDivRingLSpanV1F=BaseF
27 6 a1i FDivRingV=subringAlgFBaseF
28 eqidd FDivRing1F=1F
29 ssidd FDivRingBaseFBaseF
30 27 28 29 sra1r FDivRing1F=1V
31 30 sneqd FDivRing1F=1V
32 31 fveq2d FDivRingLSpanV1F=LSpanV1V
33 27 29 srabase FDivRingBaseF=BaseV
34 26 32 33 3eqtr3d FDivRingLSpanV1V=BaseV
35 eqid LBasisV=LBasisV
36 eqid LSpanV=LSpanV
37 11 35 36 islbs4 1VLBasisV1VLIndSVLSpanV1V=BaseV
38 19 34 37 sylanbrc FDivRing1VLBasisV
39 35 dimval VLVec1VLBasisVdimV=1V
40 3 38 39 syl2anc FDivRingdimV=1V
41 fvex 1VV
42 hashsng 1VV1V=1
43 41 42 ax-mp 1V=1
44 40 43 eqtrdi FDivRingdimV=1