Metamath Proof Explorer


Theorem rngqiprngghm

Description: F is a homomorphism of the additive groups of non-unital rings. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
rngqiprngim.f F=xBx˙1˙·˙x
Assertion rngqiprngghm φFRGrpHomP

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 rngqiprngim.f F=xBx˙1˙·˙x
13 eqid BaseP=BaseP
14 eqid +R=+R
15 eqid +P=+P
16 rnggrp RRngRGrp
17 1 16 syl φRGrp
18 1 2 3 4 5 6 7 8 9 10 11 rngqiprng φPRng
19 rnggrp PRngPGrp
20 18 19 syl φPGrp
21 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf φF:BC×I
22 1 2 3 4 5 6 7 8 9 10 11 rngqipbas φBaseP=C×I
23 22 feq3d φF:BBasePF:BC×I
24 21 23 mpbird φF:BBaseP
25 ringrng JRingJRng
26 4 25 syl φJRng
27 3 26 eqeltrrid φR𝑠IRng
28 1 2 27 rng2idlnsg φINrmSGrpR
29 28 5 8 9 ecqusadd φaBbBa+Rb˙=a˙+Qb˙
30 1 2 3 4 5 6 7 rngqiprngghmlem3 φaBbB1˙·˙a+Rb=1˙·˙a+J1˙·˙b
31 29 30 opeq12d φaBbBa+Rb˙1˙·˙a+Rb=a˙+Qb˙1˙·˙a+J1˙·˙b
32 eqid BaseQ=BaseQ
33 eqid BaseJ=BaseJ
34 9 ovexi QV
35 34 a1i φaBbBQV
36 4 adantr φaBbBJRing
37 simpl aBbBaB
38 8 9 5 32 quseccl0 RRngaBa˙BaseQ
39 1 37 38 syl2an φaBbBa˙BaseQ
40 1 2 3 4 5 6 7 rngqiprngghmlem1 φaB1˙·˙aBaseJ
41 40 adantrr φaBbB1˙·˙aBaseJ
42 simpr aBbBbB
43 8 9 5 32 quseccl0 RRngbBb˙BaseQ
44 1 42 43 syl2an φaBbBb˙BaseQ
45 1 2 3 4 5 6 7 rngqiprngghmlem1 φbB1˙·˙bBaseJ
46 45 adantrl φaBbB1˙·˙bBaseJ
47 28 5 8 9 ecqusaddcl φaBbBa˙+Qb˙BaseQ
48 1 2 3 4 5 6 7 rngqiprngghmlem2 φaBbB1˙·˙a+J1˙·˙bBaseJ
49 eqid +Q=+Q
50 eqid +J=+J
51 11 32 33 35 36 39 41 44 46 47 48 49 50 15 xpsadd φaBbBa˙1˙·˙a+Pb˙1˙·˙b=a˙+Qb˙1˙·˙a+J1˙·˙b
52 31 51 eqtr4d φaBbBa+Rb˙1˙·˙a+Rb=a˙1˙·˙a+Pb˙1˙·˙b
53 1 adantr φaBbBRRng
54 37 adantl φaBbBaB
55 42 adantl φaBbBbB
56 5 14 rngacl RRngaBbBa+RbB
57 53 54 55 56 syl3anc φaBbBa+RbB
58 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φa+RbBFa+Rb=a+Rb˙1˙·˙a+Rb
59 57 58 syldan φaBbBFa+Rb=a+Rb˙1˙·˙a+Rb
60 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φaBFa=a˙1˙·˙a
61 60 adantrr φaBbBFa=a˙1˙·˙a
62 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φbBFb=b˙1˙·˙b
63 62 adantrl φaBbBFb=b˙1˙·˙b
64 61 63 oveq12d φaBbBFa+PFb=a˙1˙·˙a+Pb˙1˙·˙b
65 52 59 64 3eqtr4d φaBbBFa+Rb=Fa+PFb
66 5 13 14 15 17 20 24 65 isghmd φFRGrpHomP