Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|
2 |
|
rng2idlring.i |
|
3 |
|
rng2idlring.j |
|
4 |
|
rng2idlring.u |
|
5 |
|
rng2idlring.b |
|
6 |
|
rng2idlring.t |
|
7 |
|
rng2idlring.1 |
|
8 |
|
rngqiprngim.g |
|
9 |
|
rngqiprngim.q |
|
10 |
|
rngqiprngim.c |
|
11 |
|
rngqiprngim.p |
|
12 |
|
rngqiprngim.f |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
rnggrp |
|
17 |
1 16
|
syl |
|
18 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprng |
|
19 |
|
rnggrp |
|
20 |
18 19
|
syl |
|
21 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf |
|
22 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqipbas |
|
23 |
22
|
feq3d |
|
24 |
21 23
|
mpbird |
|
25 |
|
ringrng |
|
26 |
4 25
|
syl |
|
27 |
3 26
|
eqeltrrid |
|
28 |
1 2 27
|
rng2idlnsg |
|
29 |
28 5 8 9
|
ecqusadd |
|
30 |
1 2 3 4 5 6 7
|
rngqiprngghmlem3 |
|
31 |
29 30
|
opeq12d |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
9
|
ovexi |
|
35 |
34
|
a1i |
|
36 |
4
|
adantr |
|
37 |
|
simpl |
|
38 |
8 9 5 32
|
quseccl0 |
|
39 |
1 37 38
|
syl2an |
|
40 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
41 |
40
|
adantrr |
|
42 |
|
simpr |
|
43 |
8 9 5 32
|
quseccl0 |
|
44 |
1 42 43
|
syl2an |
|
45 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
46 |
45
|
adantrl |
|
47 |
28 5 8 9
|
ecqusaddcl |
|
48 |
1 2 3 4 5 6 7
|
rngqiprngghmlem2 |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
11 32 33 35 36 39 41 44 46 47 48 49 50 15
|
xpsadd |
|
52 |
31 51
|
eqtr4d |
|
53 |
1
|
adantr |
|
54 |
37
|
adantl |
|
55 |
42
|
adantl |
|
56 |
5 14
|
rngacl |
|
57 |
53 54 55 56
|
syl3anc |
|
58 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
59 |
57 58
|
syldan |
|
60 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
61 |
60
|
adantrr |
|
62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
63 |
62
|
adantrl |
|
64 |
61 63
|
oveq12d |
|
65 |
52 59 64
|
3eqtr4d |
|
66 |
5 13 14 15 17 20 24 65
|
isghmd |
|