Description: F is a function from (the base set of) a non-unital ring to the product of the (base set C of the) quotient with a two-sided ideal and the (base set I of the) two-sided ideal (because of 2idlbas , ( BaseJ ) = I !) (Contributed by AV, 21-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
rngqiprngim.g | |
||
rngqiprngim.q | |
||
rngqiprngim.c | |
||
rngqiprngim.p | |
||
rngqiprngim.f | |
||
Assertion | rngqiprngimf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | rngqiprngim.g | |
|
9 | rngqiprngim.q | |
|
10 | rngqiprngim.c | |
|
11 | rngqiprngim.p | |
|
12 | rngqiprngim.f | |
|
13 | 8 | ovexi | |
14 | 13 | ecelqsi | |
15 | 14 | adantl | |
16 | 9 | a1i | |
17 | 5 | a1i | |
18 | 13 | a1i | |
19 | 1 | adantr | |
20 | 16 17 18 19 | qusbas | |
21 | 20 10 | eqtr4di | |
22 | 15 21 | eleqtrd | |
23 | eqid | |
|
24 | 2 3 23 | 2idlbas | |
25 | 2 3 23 | 2idlelbas | |
26 | 25 | simprd | |
27 | 24 26 | eqeltrrd | |
28 | ringrng | |
|
29 | 4 28 | syl | |
30 | 3 29 | eqeltrrid | |
31 | 1 2 30 | rng2idl0 | |
32 | 1 27 31 | 3jca | |
33 | 23 7 | ringidcl | |
34 | 4 33 | syl | |
35 | 34 24 | eleqtrd | |
36 | 35 | anim1ci | |
37 | eqid | |
|
38 | eqid | |
|
39 | 37 5 6 38 | rngridlmcl | |
40 | 32 36 39 | syl2an2r | |
41 | 22 40 | opelxpd | |
42 | 41 12 | fmptd | |