Metamath Proof Explorer


Theorem rngqiprngimf

Description: F is a function from (the base set of) a non-unital ring to the product of the (base set C of the) quotient with a two-sided ideal and the (base set I of the) two-sided ideal (because of 2idlbas , ( BaseJ ) = I !) (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
rngqiprngim.f F=xBx˙1˙·˙x
Assertion rngqiprngimf φF:BC×I

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 rngqiprngim.f F=xBx˙1˙·˙x
13 8 ovexi ˙V
14 13 ecelqsi xBx˙B/˙
15 14 adantl φxBx˙B/˙
16 9 a1i φxBQ=R/𝑠˙
17 5 a1i φxBB=BaseR
18 13 a1i φxB˙V
19 1 adantr φxBRRng
20 16 17 18 19 qusbas φxBB/˙=BaseQ
21 20 10 eqtr4di φxBB/˙=C
22 15 21 eleqtrd φxBx˙C
23 eqid BaseJ=BaseJ
24 2 3 23 2idlbas φBaseJ=I
25 2 3 23 2idlelbas φBaseJLIdealRBaseJLIdealopprR
26 25 simprd φBaseJLIdealopprR
27 24 26 eqeltrrd φILIdealopprR
28 ringrng JRingJRng
29 4 28 syl φJRng
30 3 29 eqeltrrid φR𝑠IRng
31 1 2 30 rng2idl0 φ0RI
32 1 27 31 3jca φRRngILIdealopprR0RI
33 23 7 ringidcl JRing1˙BaseJ
34 4 33 syl φ1˙BaseJ
35 34 24 eleqtrd φ1˙I
36 35 anim1ci φxBxB1˙I
37 eqid 0R=0R
38 eqid LIdealopprR=LIdealopprR
39 37 5 6 38 rngridlmcl RRngILIdealopprR0RIxB1˙I1˙·˙xI
40 32 36 39 syl2an2r φxB1˙·˙xI
41 22 40 opelxpd φxBx˙1˙·˙xC×I
42 41 12 fmptd φF:BC×I