Description: Lemma for rngqiprngimf1 . (Contributed by AV, 7-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
rngqiprngim.g | |
||
rngqiprngim.q | |
||
Assertion | rngqiprngimf1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | rngqiprngim.g | |
|
9 | rngqiprngim.q | |
|
10 | ringrng | |
|
11 | 4 10 | syl | |
12 | 3 11 | eqeltrrid | |
13 | 1 2 12 | rng2idlnsg | |
14 | 13 | adantr | |
15 | 8 | oveq2i | |
16 | 9 15 | eqtri | |
17 | eqid | |
|
18 | 16 17 | qus0 | |
19 | 14 18 | syl | |
20 | 19 | eqcomd | |
21 | 20 | eqeq2d | |
22 | 8 | eqcomi | |
23 | 22 | eceq2i | |
24 | 23 | a1i | |
25 | 24 | eqeq2d | |
26 | eqcom | |
|
27 | rngabl | |
|
28 | 1 27 | syl | |
29 | nsgsubg | |
|
30 | 13 29 | syl | |
31 | 28 30 | jca | |
32 | 5 17 | rng0cl | |
33 | 1 32 | syl | |
34 | 33 | anim1i | |
35 | eqid | |
|
36 | 5 35 8 | qusecsub | |
37 | 31 34 36 | syl2an2r | |
38 | 26 37 | bitrid | |
39 | 21 25 38 | 3bitrd | |
40 | rnggrp | |
|
41 | 1 40 | syl | |
42 | 5 17 35 | grpsubid1 | |
43 | 41 42 | sylan | |
44 | 43 | eleq1d | |
45 | eqid | |
|
46 | eqid | |
|
47 | eqid | |
|
48 | 4 | adantr | |
49 | simpr | |
|
50 | eqid | |
|
51 | 45 46 47 48 49 50 | ring1nzdiv | |
52 | 51 | biimpd | |
53 | 52 | ex | |
54 | 2 3 45 | 2idlbas | |
55 | 54 | eqcomd | |
56 | 55 | eleq2d | |
57 | 3 6 | ressmulr | |
58 | 2 57 | syl | |
59 | 7 | a1i | |
60 | eqidd | |
|
61 | 58 59 60 | oveq123d | |
62 | 61 | eqeq1d | |
63 | 3 17 | subg0 | |
64 | 30 63 | syl | |
65 | 64 | eqeq2d | |
66 | 62 65 | imbi12d | |
67 | 53 56 66 | 3imtr4d | |
68 | 67 | adantr | |
69 | 44 68 | sylbid | |
70 | 39 69 | sylbid | |
71 | 70 | impd | |