Metamath Proof Explorer


Theorem rngqiprngimf1lem

Description: Lemma for rngqiprngimf1 . (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
Assertion rngqiprngimf1lem φABA˙=0Q1˙·˙A=0JA=0R

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 ringrng JRingJRng
11 4 10 syl φJRng
12 3 11 eqeltrrid φR𝑠IRng
13 1 2 12 rng2idlnsg φINrmSGrpR
14 13 adantr φABINrmSGrpR
15 8 oveq2i R/𝑠˙=R/𝑠R~QGI
16 9 15 eqtri Q=R/𝑠R~QGI
17 eqid 0R=0R
18 16 17 qus0 INrmSGrpR0RR~QGI=0Q
19 14 18 syl φAB0RR~QGI=0Q
20 19 eqcomd φAB0Q=0RR~QGI
21 20 eqeq2d φABA˙=0QA˙=0RR~QGI
22 8 eqcomi R~QGI=˙
23 22 eceq2i 0RR~QGI=0R˙
24 23 a1i φAB0RR~QGI=0R˙
25 24 eqeq2d φABA˙=0RR~QGIA˙=0R˙
26 eqcom A˙=0R˙0R˙=A˙
27 rngabl RRngRAbel
28 1 27 syl φRAbel
29 nsgsubg INrmSGrpRISubGrpR
30 13 29 syl φISubGrpR
31 28 30 jca φRAbelISubGrpR
32 5 17 rng0cl RRng0RB
33 1 32 syl φ0RB
34 33 anim1i φAB0RBAB
35 eqid -R=-R
36 5 35 8 qusecsub RAbelISubGrpR0RBAB0R˙=A˙A-R0RI
37 31 34 36 syl2an2r φAB0R˙=A˙A-R0RI
38 26 37 bitrid φABA˙=0R˙A-R0RI
39 21 25 38 3bitrd φABA˙=0QA-R0RI
40 rnggrp RRngRGrp
41 1 40 syl φRGrp
42 5 17 35 grpsubid1 RGrpABA-R0R=A
43 41 42 sylan φABA-R0R=A
44 43 eleq1d φABA-R0RIAI
45 eqid BaseJ=BaseJ
46 eqid 0J=0J
47 eqid J=J
48 4 adantr φABaseJJRing
49 simpr φABaseJABaseJ
50 eqid 1J=1J
51 45 46 47 48 49 50 ring1nzdiv φABaseJ1JJA=0JA=0J
52 51 biimpd φABaseJ1JJA=0JA=0J
53 52 ex φABaseJ1JJA=0JA=0J
54 2 3 45 2idlbas φBaseJ=I
55 54 eqcomd φI=BaseJ
56 55 eleq2d φAIABaseJ
57 3 6 ressmulr I2IdealR·˙=J
58 2 57 syl φ·˙=J
59 7 a1i φ1˙=1J
60 eqidd φA=A
61 58 59 60 oveq123d φ1˙·˙A=1JJA
62 61 eqeq1d φ1˙·˙A=0J1JJA=0J
63 3 17 subg0 ISubGrpR0R=0J
64 30 63 syl φ0R=0J
65 64 eqeq2d φA=0RA=0J
66 62 65 imbi12d φ1˙·˙A=0JA=0R1JJA=0JA=0J
67 53 56 66 3imtr4d φAI1˙·˙A=0JA=0R
68 67 adantr φABAI1˙·˙A=0JA=0R
69 44 68 sylbid φABA-R0RI1˙·˙A=0JA=0R
70 39 69 sylbid φABA˙=0Q1˙·˙A=0JA=0R
71 70 impd φABA˙=0Q1˙·˙A=0JA=0R