Description: F is linear with respect to the multiplication. (Contributed by AV, 28-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
rngqiprngim.g | |
||
rngqiprngim.q | |
||
rngqiprngim.c | |
||
rngqiprngim.p | |
||
rngqiprngim.f | |
||
Assertion | rngqiprnglin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | rngqiprngim.g | |
|
9 | rngqiprngim.q | |
|
10 | rngqiprngim.c | |
|
11 | rngqiprngim.p | |
|
12 | rngqiprngim.f | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 9 | ovexi | |
16 | 15 | a1i | |
17 | 4 | adantr | |
18 | simpl | |
|
19 | 8 9 5 13 | quseccl0 | |
20 | 1 18 19 | syl2an | |
21 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | |
22 | 18 21 | sylan2 | |
23 | simpr | |
|
24 | 8 9 5 13 | quseccl0 | |
25 | 1 23 24 | syl2an | |
26 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | |
27 | 23 26 | sylan2 | |
28 | 1 2 3 4 5 6 7 8 9 | rngqiprnglinlem3 | |
29 | eqid | |
|
30 | 14 29 17 22 27 | ringcld | |
31 | eqid | |
|
32 | eqid | |
|
33 | 11 13 14 16 17 20 22 25 27 28 30 31 29 32 | xpsmul | |
34 | 1 2 3 4 5 6 7 8 9 | rngqiprnglinlem2 | |
35 | 34 | eqcomd | |
36 | 2 | adantr | |
37 | 3 6 | ressmulr | |
38 | 36 37 | syl | |
39 | 38 | eqcomd | |
40 | 39 | oveqd | |
41 | 1 2 3 4 5 6 7 | rngqiprnglinlem1 | |
42 | 40 41 | eqtrd | |
43 | 35 42 | opeq12d | |
44 | 33 43 | eqtr2d | |
45 | 1 | anim1i | |
46 | 3anass | |
|
47 | 45 46 | sylibr | |
48 | 5 6 | rngcl | |
49 | 47 48 | syl | |
50 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv | |
51 | 49 50 | syldan | |
52 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv | |
53 | 18 52 | sylan2 | |
54 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv | |
55 | 23 54 | sylan2 | |
56 | 53 55 | oveq12d | |
57 | 44 51 56 | 3eqtr4d | |
58 | 57 | ralrimivva | |