Metamath Proof Explorer


Theorem rngqiprnglin

Description: F is linear with respect to the multiplication. (Contributed by AV, 28-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
rngqiprngim.f F=xBx˙1˙·˙x
Assertion rngqiprnglin φaBbBFa·˙b=FaPFb

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 rngqiprngim.f F=xBx˙1˙·˙x
13 eqid BaseQ=BaseQ
14 eqid BaseJ=BaseJ
15 9 ovexi QV
16 15 a1i φaBbBQV
17 4 adantr φaBbBJRing
18 simpl aBbBaB
19 8 9 5 13 quseccl0 RRngaBa˙BaseQ
20 1 18 19 syl2an φaBbBa˙BaseQ
21 1 2 3 4 5 6 7 rngqiprngghmlem1 φaB1˙·˙aBaseJ
22 18 21 sylan2 φaBbB1˙·˙aBaseJ
23 simpr aBbBbB
24 8 9 5 13 quseccl0 RRngbBb˙BaseQ
25 1 23 24 syl2an φaBbBb˙BaseQ
26 1 2 3 4 5 6 7 rngqiprngghmlem1 φbB1˙·˙bBaseJ
27 23 26 sylan2 φaBbB1˙·˙bBaseJ
28 1 2 3 4 5 6 7 8 9 rngqiprnglinlem3 φaBbBa˙Qb˙BaseQ
29 eqid J=J
30 14 29 17 22 27 ringcld φaBbB1˙·˙aJ1˙·˙bBaseJ
31 eqid Q=Q
32 eqid P=P
33 11 13 14 16 17 20 22 25 27 28 30 31 29 32 xpsmul φaBbBa˙1˙·˙aPb˙1˙·˙b=a˙Qb˙1˙·˙aJ1˙·˙b
34 1 2 3 4 5 6 7 8 9 rngqiprnglinlem2 φaBbBa·˙b˙=a˙Qb˙
35 34 eqcomd φaBbBa˙Qb˙=a·˙b˙
36 2 adantr φaBbBI2IdealR
37 3 6 ressmulr I2IdealR·˙=J
38 36 37 syl φaBbB·˙=J
39 38 eqcomd φaBbBJ=·˙
40 39 oveqd φaBbB1˙·˙aJ1˙·˙b=1˙·˙a·˙1˙·˙b
41 1 2 3 4 5 6 7 rngqiprnglinlem1 φaBbB1˙·˙a·˙1˙·˙b=1˙·˙a·˙b
42 40 41 eqtrd φaBbB1˙·˙aJ1˙·˙b=1˙·˙a·˙b
43 35 42 opeq12d φaBbBa˙Qb˙1˙·˙aJ1˙·˙b=a·˙b˙1˙·˙a·˙b
44 33 43 eqtr2d φaBbBa·˙b˙1˙·˙a·˙b=a˙1˙·˙aPb˙1˙·˙b
45 1 anim1i φaBbBRRngaBbB
46 3anass RRngaBbBRRngaBbB
47 45 46 sylibr φaBbBRRngaBbB
48 5 6 rngcl RRngaBbBa·˙bB
49 47 48 syl φaBbBa·˙bB
50 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φa·˙bBFa·˙b=a·˙b˙1˙·˙a·˙b
51 49 50 syldan φaBbBFa·˙b=a·˙b˙1˙·˙a·˙b
52 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φaBFa=a˙1˙·˙a
53 18 52 sylan2 φaBbBFa=a˙1˙·˙a
54 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φbBFb=b˙1˙·˙b
55 23 54 sylan2 φaBbBFb=b˙1˙·˙b
56 53 55 oveq12d φaBbBFaPFb=a˙1˙·˙aPb˙1˙·˙b
57 44 51 56 3eqtr4d φaBbBFa·˙b=FaPFb
58 57 ralrimivva φaBbBFa·˙b=FaPFb