Metamath Proof Explorer


Theorem rngqiprngu

Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φRRng
rngqiprngfu.i φI2IdealR
rngqiprngfu.j J=R𝑠I
rngqiprngfu.u φJRing
rngqiprngfu.b B=BaseR
rngqiprngfu.t ·˙=R
rngqiprngfu.1 1˙=1J
rngqiprngfu.g ˙=R~QGI
rngqiprngfu.q Q=R/𝑠˙
rngqiprngfu.v φQRing
rngqiprngfu.e φE1Q
rngqiprngfu.m -˙=-R
rngqiprngfu.a +˙=+R
rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
Assertion rngqiprngu φ1R=U

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φRRng
2 rngqiprngfu.i φI2IdealR
3 rngqiprngfu.j J=R𝑠I
4 rngqiprngfu.u φJRing
5 rngqiprngfu.b B=BaseR
6 rngqiprngfu.t ·˙=R
7 rngqiprngfu.1 1˙=1J
8 rngqiprngfu.g ˙=R~QGI
9 rngqiprngfu.q Q=R/𝑠˙
10 rngqiprngfu.v φQRing
11 rngqiprngfu.e φE1Q
12 rngqiprngfu.m -˙=-R
13 rngqiprngfu.a +˙=+R
14 rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
15 eqid Q×𝑠J=Q×𝑠J
16 15 10 4 xpsringd φQ×𝑠JRing
17 eqid BaseQ=BaseQ
18 eqid xBx˙1˙·˙x=xBx˙1˙·˙x
19 1 2 3 4 5 6 7 8 9 17 15 18 rngqiprngim φxBx˙1˙·˙xRRngIsoQ×𝑠J
20 rngimcnv xBx˙1˙·˙xRRngIsoQ×𝑠JxBx˙1˙·˙x-1Q×𝑠JRngIsoR
21 19 20 syl φxBx˙1˙·˙x-1Q×𝑠JRngIsoR
22 rngisomring1 Q×𝑠JRingRRngxBx˙1˙·˙x-1Q×𝑠JRngIsoR1R=xBx˙1˙·˙x-11Q×𝑠J
23 16 1 21 22 syl3anc φ1R=xBx˙1˙·˙x-11Q×𝑠J
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 rngqiprngfu φxBx˙1˙·˙xU=E˙1˙
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rngqipring1 φ1Q×𝑠J=E˙1˙
26 24 25 eqtr4d φxBx˙1˙·˙xU=1Q×𝑠J
27 eqid BaseQ×𝑠J=BaseQ×𝑠J
28 5 27 rngimf1o xBx˙1˙·˙xRRngIsoQ×𝑠JxBx˙1˙·˙x:B1-1 ontoBaseQ×𝑠J
29 19 28 syl φxBx˙1˙·˙x:B1-1 ontoBaseQ×𝑠J
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3 φUB
31 eqid 1Q×𝑠J=1Q×𝑠J
32 27 31 ringidcl Q×𝑠JRing1Q×𝑠JBaseQ×𝑠J
33 16 32 syl φ1Q×𝑠JBaseQ×𝑠J
34 f1ocnvfvb xBx˙1˙·˙x:B1-1 ontoBaseQ×𝑠JUB1Q×𝑠JBaseQ×𝑠JxBx˙1˙·˙xU=1Q×𝑠JxBx˙1˙·˙x-11Q×𝑠J=U
35 29 30 33 34 syl3anc φxBx˙1˙·˙xU=1Q×𝑠JxBx˙1˙·˙x-11Q×𝑠J=U
36 26 35 mpbid φxBx˙1˙·˙x-11Q×𝑠J=U
37 23 36 eqtrd φ1R=U